

Evaluation of the thermal photon radiation

from a recent solution of relativistic hydrodynamics

GÁBOR KASZA

XVI WORKSHOP ON PARTICLE CORRELATION AND FEMTOSCOPY & IV RESONANCE WORKSHOP

CATANIA, 08/11/2023

arXiv:2311.03568

Importance of direct photon spectrum

Direct photons (DP): those photons that not coming from hadron decays Probe towards our **understanding of the evolution of relativistic heavy ion collisions** Small cross section of electromagnetic interaction \rightarrow **DP traverse the medium unmodified** Penetrating photons \rightarrow **encode information of the environment** (temperature, collective motion) Low p_T regime: mostly the **thermal component of the spectrum** \rightarrow **can be evaluated by hydro** High p_T regime: photons from high scattering processes

Today's presentation:

• A new analytic formula has been found based on the Csörgő-Kasza-Csanád-Jiang solution Universe 4 (2018) 6, 69

• This formula is compared to PHENIX Au+Au@200 GeV 0-20% dataset arXiv:2203.17187

Similar efforts was done by Csanád and Májer in 2012: Central Eur.J.Phys. 10 (2012)

The evolution of relativistic heavy-ion collisions

The evolution of relativistic heavy-ion collisions

Period of our interest

Csörgő-Kasza-Csanád-Jiang (CKCJ) hydro solution

Rindler coordinates, velocity field:

$$(\tau, \eta_x) = \left(\sqrt{t^2 - r_z^2}, \frac{1}{2} \ln\left[\frac{t + r_z}{t - r_z}\right]\right)$$

 $u^{\mu} = (\cosh(\Omega), \sinh(\Omega))$

1+1 dimensional perfect fluid solution:

$$\begin{split} \eta_x(H) &= \Omega(H) - H, \\ \Omega(H) &= \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H)\right) \\ \sigma(\tau, H) &= \sigma_0 \left(\frac{\tau_0}{\tau}\right)^{\lambda} \mathcal{V}_{\sigma}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{\lambda}{2}}, \\ T(\tau, H) &= T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{\lambda}{\kappa}} \mathcal{T}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{\lambda}{2\kappa}}, \\ \mathcal{T}(s) &= \frac{1}{\mathcal{V}_{\sigma}(s)}, \\ s(\tau, H) &= \left(\frac{\tau_0}{\tau}\right)^{\lambda - 1} \sinh(H) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\lambda/2} \end{split}$$

t-t₀ [fm] T/T 0.9 **1/1** 5 0.95 $\tau = \tau_0$ c_s²=0.1 c_s²=0.1 0.85 $\lambda = 1.14$ 0.75 $\lambda = 1.14$ 0.8 finite t-t₀ [fm] solution 3 5 0 -1.5 0 -10 -5 0 5 -1.5 -0.75 0 0.75 1.5 r_ [fm] η_{X}

Equation of State:

 $\varepsilon = \kappa p$

(with *µ=0*)

Universe 4 (2018) 6, 69

Nonprompt spectrum of direct photons

Focusing on photons:

Direct photons = Inclusive photons – Decay photons

Nonprompt photons ≈ Thermal photons = Direct photons – Prompt photons

Initial temperature can be extracted from thermal component!

Nonprompt spectrum of direct photons

Some earlier success with the CKCJ solution

Quantitatively acceptable description of $dN/d\eta_p$ and R_{long} in Au+Au@200 GeV collisions

Int.J.Mod.Phys.A 34 (2019) 26, 1950147

Some earlier success with the CKCJ solution

Significant correction to Bjorken's initial energy density

Int.J.Mod.Phys.A 34 (2019) 26, 1950147

Derivation of the thermal radiation

Source function:

$$S(x^{\mu}, p^{\mu}) d^4 x = \frac{g}{\left(2\pi\hbar\right)^3} \frac{H(\tau)p_{\mu}d\Sigma^{\mu}}{\exp\left(\frac{p^{\mu}u_{\mu}}{T}\right) - 1}$$

Using the **1+1 dimensional** CKCJ solution:

$$d\Sigma^{\mu} = \frac{u^{\mu}\tau d\tau d\eta_z dr_x dr_y}{\cosh\left(\Omega\left(\eta_z\right) - \eta_z\right)}$$

Assuming homogeneous transverse distribution of temperature

Window function: probability distribution of photon emission

$$H(\tau) = \frac{\Theta \left(\tau - \tau_{\rm f}\right) - \Theta \left(\tau - \tau_{\rm 0}\right)}{\tau_{\rm f} - \tau_{\rm 0}}$$

The new analytic formula for the thermal radiation

The source function is integrated over space and time

- Using Boltzmann approximation of the integrand
- Motivated by earlier results: λ was assumed to be close to 1
- The integral was perfromed by saddle point approximation
- The result is evaluated at **midrapidity** (*y≈*0)

$$\frac{d^2 N}{2\pi p_T dp_T dy}\bigg|_{y=0} = N_0 \frac{2\alpha}{3\pi^{3/2}} \left[\frac{1}{T_{\rm f}^{\alpha}} - \frac{1}{T_0^{\alpha}}\right]^{-1} p_T^{-\alpha-2} \left[\Gamma\left(\alpha + \frac{7}{2}, \frac{p_T}{T_0}\right) - \Gamma\left(\alpha + \frac{7}{2}, \frac{p_T}{T_{\rm f}}\right)\right]$$

 λ and κ are collapsed into α (typical behaviour of hydro): $\alpha = \frac{2\kappa}{\lambda} - 3$

*T*_f: freeze-out temperature

 T_0 : initial temperature

*N*₀: multiplicity at midrapidity

The new analytic formula for the thermal radiation

Fit to experimental data

Good confidence level with realistic values of physical parameters

Intermediate p_{τ} regime $\rightarrow T_o$ can be determined more precisely

Earlier results: λ was determined by $dN/d\eta_p$ fits $\rightarrow \kappa$ can be extracted from α

Data is from: arXiv:2203.17187

Fit to experimental data

Good confidence level with realistic values of physical parameters

Intermediate p_{τ} regime $\rightarrow T_o$ can be determined more precisely

Earlier results: λ was determined by $dN/d\eta_p$ fits $\rightarrow \kappa$ can be extracted from α

Data is from: <u>arXiv:2203.17187</u>

Conclusions

New analytic formula for the thermal radiation based on the CKCJ solution:

- Describes well the nonprompt spectrum of the 0-20% Au+Au@200 GeV dataset
- The new formula lacks of radial flow ightarrow further corrections are justified
- The new formula lacks of viscous effects \rightarrow it seems **viscosity are not necessary** to describe the data

According to my result, the initial temperature is clearly higher than the Hagedorn temperature:

$$T_{\rm H} \ll T_0 = 0.6^{+0.2}_{-0.1} (\text{stat})^{+0.2}_{-0.2} (\text{syst}) \text{ GeV}$$

 $0.14 {
m ~GeV} < T_{
m H} < 0.34 {
m ~GeV}$ -

Broniowski, Florkowski: Phys. Lett. B 490 (2000), pp. 223–227. Broniowski, Florkowski, Glozman: Phys. Rev. D 70 (2004), p. 117503. Cohen, Krejcirik: J. Phys. G 39 (2012), p. 055001. Cleymans, Worku: Mod. Phys. Lett. A26 (2011), pp. 1197–1209.

My result confirms the earlier conclusion of PHENIX:

At the beginning the temperature of the created medium is too high for hadrons to exist.

PHENIX: Phys. Rev. Lett. 104 (2010), p. 132301.

Thank you for your attention!