Entanglement-Enabled Spin Inter erence

By James Daniel Brandenburg

1. Mystery: Nuclear Radius Measurements
2. Solved?: Imaging with Polared Tight 3. The (Inverse) Cotler-Wilcrek Process

2023 Workshop on Particle Correlations and Femtoseopy Catania, Italy

Shiming light on Gluons

- Photo-nuclear measurements have been used to study QCD matter already for decades[1-3]
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010). [2] ZEUS Collaboration. Eur. Phys. J. C 2, 247-267 (1998).

Well known process for probing the hadronic structure of the photon and nucleon (nuclear) target

UPCs: The Strongest Electromagnetic Fields

\triangleright In heavy-ion collisions:
$E_{\text {max }}=\frac{Z e \gamma}{b^{2}} \approx 5 \times 10^{16}-10^{18} \mathrm{~V} / \mathrm{cm}$ $B_{\max } \sim 10^{14}-10^{16} \mathrm{~T}$
\triangleright Strongest EM fields in the Universe
\triangleright But very short lifetime - not constant
Must be treated in terms of photon quanta

$$
\begin{array}{ll}
E_{\gamma, \text { max }} \approx \gamma \hbar c / R & 80 \mathrm{GeV} @ \mathrm{LHC} \\
3 \mathrm{GeV} @ \mathrm{RHIC}
\end{array}
$$

High energy (small wavelength) photons
can be used to 'image' the nucleus

Past Photo-Nuclear Measurements

- Many studies of $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$in the past

Coherent Diffractive Interactions:

- Photon interacts with the entire nucleus
- Diffractive structure in $p_{T}^{2} \approx-t$
- Transverse momentum related to Fourier transform of nuclear density distribution

$$
\sigma(\gamma p \rightarrow V p)=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\right|_{t=0} \int_{t_{\min }}^{\infty}|F(t)|^{2} \mathrm{~d} t
$$

Past Photo-Nuclear \mathbb{M} Measurements

Other measurements at RHIC \& LHC include:

Photoproduction of J $/ \psi$ in Au+Au UPC at $\sqrt{S_{N N}}=200 \mathrm{GeV}$
PHENIX Phys.Lett.B679:321-329,2009
ρ^{0} vector mesons in $\mathrm{Pb}-\mathrm{Pb}$ UPC at $\sqrt{S_{N N}}=$ 5.02 TeV

ALICE, JHEPO6 (2020) 35
J / Ψ in $\mathrm{Pb}+\mathrm{Pb}$ UPC at $\sqrt{S_{N N}}=2.76 \mathrm{TeV}$ CMS, Phys. Lett. B 772 (2017) 489
... and many more

So what's the problem?

Photo-nuclear measurements have historically produced a |t| slope that corresponds to a mysteriously large source!

STAR (2017): $|t|$ slope $=407.8 \pm 3(\mathrm{GeV} / \mathrm{c})^{-2}$
\rightarrow Effective radius of 8 fm
$\left(R_{\text {Au }}^{\text {charged }} \approx 6.38 \mathrm{fm}\right)$
ALICE (Pb) : $|\mathrm{t}|$ slope $=426 \pm 6 \pm 15(\mathrm{GeV} / \mathrm{c})^{-2}$
\rightarrow Effective radius of 8.1 fm
$\left(R_{P b}^{\text {charged }} \approx 6.62 \mathrm{fm}\right)$

Extracted nuclear radii are way too large to be explainable

STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017).
J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.

Imaging the $\mathbb{N} u c l e u s$ with Polarized Photons

What is NEW with transversely polarized photons?

What is NEW with transversely polarized photons?
C. Li, J. Zhou, Y. Zhou, Phys. Lett. B 795, 576 (2019)
C. Li, J. Zhou \& Y. Zhou Phys. Rev. D 101, 034015 (2020)

Gluons from nucleus

Recently realized that asymmetries in angle ϕ related to polarization

Access to initial photon polarization

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Gluons from nucleus
C. Li, J. Zhou, Y. Zhou, Phys. Lett. B 795, 576 (2019)
C. Li, J. Zhou \& Y. Zhou Phys. Rev. D 101, 034015 (2020)

- Intrinsic photon spin transferred to ρ^{0}
- ρ^{0} spin converted into orbital angular momentum between pions
o Observable as anisotropy in $\pi^{ \pm}$ momentum

Access to initial photon polarization

Observation of Strong Asymmetry in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

- Intrinsic photon spin transferred to ρ^{0}
- ρ^{0} spin converted into orbital angular momentum between pions
- Observable as anisotropy in $\pi^{ \pm}$ momentum

Observation of Strong Asymmetry in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

STAR: Signal Trtr pairs with $P_{T}<60 \mathrm{MeV}$

- Intrinsic photon spin transferred to ρ^{0}
- ρ^{0} spin converted into orbital angular momentum between pions
- Observable as anisotropy in $\pi^{ \pm}$

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023). momentum

Trivial Spin-Momentum Alignment?

For a single diagram (pA)

Gluons from nucleus

VM inherits the spin from photon (no helicity flip)
Diffractive -> VM momentum dominantly from the Pomeron
\rightarrow VM has no alignment between spin and momentum

Imaging the $\mathbb{N} u c l e u s$ with Polarized Photons

What is NEW with transversely polarized photons?

Imaging the $\mathbb{N} u c l e u s$ with Polarized Photons

What is NEW with transversely polarized photons?

What is NEW with transversely polarized photons?

Both possibilities occur simultaneously

Interference of two amplitudes

2

Interference of two amplitudes

interference - So What?

Interference of Amplitudes, so what?

Robust Theoretical Description

- First theoretical prediction for deformed Uranium
- Sensitivity to nuclear geometry!

$\boldsymbol{\beta}_{2}$

3. The CotlerWilczek
Process

- Two photon measurement from incoherent source
- "image" encoded in transverse correlations
- Requires photons be indistinguishable

Intensity Interferometry

- Incoherent Source
- Interference results from second-order coherence
- Quantum statistics determines bunching vs. anti-bunching $\mathbf{g}^{(2)}(\mathbf{t})$ second-order correlation

Photon detections as function of time for a) antibunched, b) random, and c) bunched light

Intensity Interferometry

- Results from higher order coherence

$$
\begin{aligned}
|\phi\rangle= & \left(A_{1 \alpha} A_{2 \beta}+A_{2 \alpha} A_{1 \beta}\right)|\omega, \omega\rangle \\
\langle\phi \mid \phi\rangle= & \left|A_{1 \alpha}\right|^{2}\left|A_{2 \beta}\right|^{2}+\left|A_{2 \alpha}\right|^{2}\left|A_{1 \beta}\right|^{2} \\
& +A_{1 \alpha} A_{2 \beta} A_{2 \alpha}^{*} A_{1 \beta}^{*}+A_{1 \alpha}^{*} A_{2 \beta}^{*} A_{2 \alpha} A_{1 \beta} \\
& \left\langle A_{1 \alpha} A_{1 \beta}^{*}\right\rangle_{E} \neq 0
\end{aligned}
$$

Intensity Interferometry

- Results from higher order coherence

$$
\begin{aligned}
|\phi\rangle= & \left(A_{1 \alpha} A_{2 \beta}+A_{2 \alpha} A_{1 \beta}\right)|\omega, \omega\rangle \\
\langle\phi \mid \phi\rangle= & \left|A_{1 \alpha}\right|^{2}\left|A_{2 \beta}\right|^{2}+\left|A_{2 \alpha}\right|^{2}\left|A_{1 \beta}\right|^{2} \\
& +A_{1 \alpha} A_{2 \beta} A_{2 \alpha}^{*} A_{1 \beta}^{*}+A_{1 \alpha}^{*} A_{2 \beta}^{*} A_{2 c} \\
& \left\langle A_{1 \alpha} A_{1 \beta}^{*}\right\rangle_{E} \neq 0
\end{aligned}
$$

Requires indistinguishable states!

The Cotler-Wilczek Process

Sources
$|\psi\rangle=A_{1 \alpha} A_{2 \beta}\left|\omega_{1}, \omega_{2}\right\rangle+A_{2 \alpha} A_{1 \beta}\left|\omega_{2}, \omega_{1}\right\rangle$

$$
\langle\psi \mid \psi\rangle=\left|A_{1 \alpha} A_{2 \beta}\right|^{2}+\left|A_{2 \alpha} A_{1 \beta}\right|^{2}
$$

Distinguishable states = NO Interference!

arXiv:1502.02477

The Cotler-Wilczek Process

$|\psi\rangle=A_{1 \alpha} A_{2 \beta}\left|\omega_{1}, \omega_{2}\right\rangle+A_{2 \alpha} A_{1 \beta}\left|\omega_{2}, \omega_{1}\right\rangle$
Sources

Interference Recovered! $\left\langle A_{1 \alpha} A_{1 \beta}^{*}\right\rangle_{E} \neq 0$

1. Entangler performs unitary transformation:

$$
\begin{aligned}
U\left|\omega_{1}\right\rangle & =\cos (\theta)\left|\omega_{1}\right\rangle+\sin (\theta) e^{i \omega_{0}}\left|\omega_{2}\right\rangle \\
U\left|\omega_{2}\right\rangle & =\sin (\theta) e^{-i \omega_{0}}\left|\omega_{1}\right\rangle+\cos (\theta)\left|\omega_{2}\right\rangle
\end{aligned}
$$

2. Filter projects common state:

$$
\begin{aligned}
& \left|\omega_{1} \omega_{2}\right\rangle \rightarrow \cos (\theta) \sin (\theta) e^{-i \omega_{0}}\left|\omega_{1}, \omega_{1}\right\rangle \\
& \left|\omega_{2} \omega_{1}\right\rangle \rightarrow \cos (\theta) \sin (\theta) e^{-i \omega_{0}}\left|\omega_{1}, \omega_{1}\right\rangle
\end{aligned}
$$

The Cotler-Willczelk Process

$$
|\psi\rangle=A_{1 \alpha} A_{2 \beta}\left|\omega_{1}, \omega_{2}\right\rangle+A_{2 \alpha} A_{1 \beta}\left|\omega_{2}, \omega_{1}\right\rangle \quad \text { Sources }_{2}
$$

1. Entangler performs unitary transformation:

$$
\begin{aligned}
U\left|\omega_{1}\right\rangle & =\cos (\theta)\left|\omega_{1}\right\rangle+\sin (\theta) e^{i \omega_{0}}\left|\omega_{2}\right\rangle \\
U\left|\omega_{2}\right\rangle & =\sin (\theta) e^{-i \omega_{0}}\left|\omega_{1}\right\rangle+\cos (\theta)\left|\omega_{2}\right\rangle
\end{aligned}
$$

2. Filler projects common state:

$$
\begin{aligned}
& \left|\omega_{1} \omega_{2}\right\rangle \rightarrow \cos (\theta) \sin (\theta) e^{-i \omega_{0}}\left|\omega_{1}, \omega_{1}\right\rangle \\
& \left|\omega_{2} \omega_{1}\right\rangle \rightarrow \cos (\theta) \sin (\theta) e^{-i \omega_{0}}\left|\omega_{1}, \omega_{1}\right\rangle
\end{aligned}
$$

Interference Recovered! $\left\langle A_{1 \alpha} A_{1 \beta}^{*}\right\rangle_{E} \neq 0$

Entanglement Enabled Intensity Interference

> Entanglement enabled Intensity Interferometry from exclusive $\pi^{+} \pi^{-}$measurements in UPC's as an inverse Cotler-Wilczek process
> Haowu Duan, Raju Venugopalan, Zhoudunming Tu, Zhangbu Xu, James Daniel Brandenburg, In preparation

Inverse Cotler-Wilczek Process: 'Filter' ρ^{0} state comes first.
Entanglement of daughter pions enables interference

$$
\begin{aligned}
<N_{A} N_{B} \mid \pi^{+} \pi^{-}> & =<N_{A} N_{B}\left|\rho_{A}><\rho_{A}\right| \pi^{+} \pi^{-}, A>\square \text { Filler }^{\circ} \\
& \times<\pi^{+} \pi^{-}, A \mid\left(\left|\pi^{+}, 1>\left|\pi^{-}, 2>+\left|\pi^{+}, 2>\right| \pi^{-}, 1>\right)\right.\right. \\
& +<N_{A} N_{B}\left|\rho_{B}><\rho_{B}\right| \pi^{+} \pi^{-}, B>\square \text { Filter } \\
& \times<\pi^{+} \pi^{-}, B \mid\left(\left|\pi^{+}, 1>\left|\pi^{-}, 2>+\left|\pi^{+}, 2>\right| \pi^{-}, 1>\right)\right.\right.
\end{aligned}
$$

Entangler

Entangler
(16)

Interference only occurs if final state particles are entangled!

"What's so wonderful," Cotler says, "is that these contemporary experiments are still pushing the boundaries of our understanding of both quantum mechanics and measurement and opening up new horizons for both theory and experiment."

\author{

- Jordan Cotler
}

SCIENTIFIC

AMERICAN Scientists See Quantum Interference between Different Kinds of Particles for First Time

A newly discovered interaction related to quantum entanglement between dissimilar particles opens a new window into the nuclei of atoms

Thank you for your attention! I hope you can at least say:

Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level.

$\mathbb{N e u t r o n ~ S k i n s ~ a t ~ H i g h - E n e r g y ~}$

$$
\begin{gathered}
S_{U}=0.44 \pm 0.05 \text { (stat.) } \\
\pm 0.08 \text { (syst.) fm }
\end{gathered}
$$

- Uranium neutron skin appears surprisingly large?
- Above trend and lowenergy measurements?

Which Radius is "correct'?

Now instead of p_{x} and p_{y} lets look at $|t|$ with a 2D approach

STAR: Au+Au $\sqrt{\mathrm{s}_{\mathrm{NN}}}=200 \mathrm{GeV}$

- Drastically different radius depending on ϕ, still way too big
- Notice how much better the Woods-Saxon dip is resolved for $\phi=\pi / 2$-> experimentally able to remove photon momentum, which blurs diffraction pattern
- Can we extract the 'true' nuclear radius from $|\mathrm{t}|$ vs. ϕ information?

Analogy to

Interferometry in
Astro-Physics

Quantum Interference provides subdiffraction limited imaging

M87 Supermassive Black hole

Analogy to

Interferometry in Astro-Physics

Quantum Interference provides subdiffraction limited imaging

Access to details of gluon distribution and neutron skin at high energy

Nuclear Gluon distribution

$\mathbb{N e u t r o n ~ S k i n s ~ a t ~ H i g h - E n e r g y ~}$

Uranium

$$
\begin{gathered}
S_{U}=0.44 \pm 0.05 \text { (stat.) } \\
\pm 0.08 \text { (syst.) fm }
\end{gathered}
$$

- Uranium neutron skin appears surprisingly large?
- Above trend and low-energy measurements?
- Theoretical approach based on CGC finds similar result as phenomenological approach

$\mathbb{N e u t r o n ~ S k i n s ~ a t ~ H i g h - E n e r g y ~}$

$$
\begin{gathered}
S_{U}=0.44 \pm 0.05 \text { (stat.) } \\
\pm 0.08 \text { (syst.) fm }
\end{gathered}
$$

- Uranium neutron skin appears surprisingly large?
- Above trend and lowenergy measurements?

Robust
 Theoretical
 Description

- First theoretical prediction for deformed Uranium
- Sensitivity to nuclear geometry!

$\boldsymbol{\beta}_{2}$

STAR: Photonuclear $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

Interference pattern used for diffraction tomography of gluon distribution \rightarrow analog to x-ray diffraction tomography

First high-energy measurements of gluon distribution with sub-femtometer resolution

Technique provides quantitative access to gluon saturation effects
BUT measurements via other vector mesons are needed for to validate QCD theoretical predictions/interpretations
Future measurements with ϕ meson and J/ ψ are important
$\mathbb{N u c l e a r}$ Radius Comparison

$\mathrm{Au}+\mathrm{Au}(\mathrm{fm})$	U+U (fm)
6.38 (long: 6.58, short: 6.05)	6.81 (long: 8.01, short: 6.23)
7.95 ± 0.03	--
7.47 ± 0.03	7.98 ± 0.03
6.53 ± 0.03 (stat.) ± 0.05 (syst.)	7.29 ± 0.06 (stat.) ± 0.05 (syst.)
6.45 ± 0.27	6.90 ± 0.14
6.74 ± 0.06	--
$\begin{gathered} 0.17 \pm 0.03 \text { (stat.) } \pm 0.08 \text { (syst.) } \\ \sim 2 \sigma \end{gathered}$	$\begin{aligned} & 0.44 \pm 0.05 \text { (stat.) } \pm 0.08 \text { (syst.) } \\ & \sim 4.7 \sigma \quad \text { (Note: for } \mathrm{Pb} \approx 0.3 \text {) } \end{aligned}$

Precision measurement of nuclear interaction radius at high-energy Measured radius of Uranium shows evidence of significant neutron skin
[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017).
[2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970). [3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971).
$\mathbb{N u c l e a r}$ Radius Comparison
$\mathrm{Au}+\mathrm{Au}(\mathrm{fm}) \quad \mathrm{U}+\mathrm{U}(\mathrm{fm})$
Charge Radius
6.38 (long: 6.58, short: 6.05) 6.81 (long: 8.01 , short: 6.23)

Inclusive |t| slope (STAR 2017) [1]
7.95 ± 0.03
Inclusive |t| slope (WSFF fit)*
7.47 ± 0.03
7.98 ± 0.03
Tomographic technique*
6.53 ± 0.03 (stat.) ± 0.05 (syst.)
7.29 ± 0.06 (stat.) ± 0.05 (syst.)
DESY [2]
6.45 ± 0.27
6.90 ± 0.14
Cornell [3]
6.74 ± 0.06
0.17 ± 0.03 (stat.) ± 0.08 (syst.)
0.44 ± 0.05 (stat.) ± 0.08 (syst.)
(Tomographic Technique)
~ 2σ
$\sim 4.7 \sigma$
(Note: for $\mathrm{Pb} \approx 0.3$)

Precision measurement of nuclear interaction radius at high-energy Measured radius of Uranium shows evidence of significant neutron skin
 [1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017).
 [2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970). [3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971).

$\mathbb{N e u t r o n ~ S k i n s ~ a t ~ H i g h - E n e r g y ~}$

$$
\begin{gathered}
\boldsymbol{S}_{\boldsymbol{A u}}=0.17 \pm \mathbf{0 . 0 3 (\text { stat.) }} \\
\pm \mathbf{0 . 0 8} \text { (syst.) fm } \\
\boldsymbol{S}_{\boldsymbol{A} \boldsymbol{u}}^{\boldsymbol{M R}-\boldsymbol{E D F}}=\mathbf{0 . 1 7} \mathbf{f m} \\
\text { Bally, B., Giacalone, G. \& Bender, M. } \\
\text { Eur. Phys. J. A 59, 58 (2023). }
\end{gathered}
$$

- Gold agrees well with state-of-the-art energy density functional calculations
- Consistent with trend from low energy measurements

$\mathbb{N e u t r o n ~ S k i n s ~ a t ~ H i g h - E n e r g y ~}$

Uranium

$$
\begin{gathered}
S_{U}=0.44 \pm 0.05 \text { (stat.) } \\
\pm 0.08 \text { (syst.) fm }
\end{gathered}
$$

- Uranium neutron skin appears surprisingly large?
- Above trend and low-energy measurements?
- Theoretical approach based on CGC finds similar result as phenomenological approach

Robust
 Theoretical
 Description

- First theoretical prediction for deformed Uranium
- Sensitivity to nuclear geometry!

$\boldsymbol{\beta}_{2}$

Confirmation from ALICE (New at QM Sept 2023)

Neutron emission categories test the impact parameter dependence

- New STAR measurementof Ψ J / ψ at QM in Sept 2023
- Consistent within error with Diffraction + Interference (Diff+Int) effect at low p_{T}
- Effect of Soft Photon radiation (Rad) visible at higher p_{T}

Access to Hadronic Light-by-Light

Interference with the hadronic light-by-light diagram
Leads to a unique signature -> odd spin configurations

Contribution fromPladronic Vacuum Polarization and Hadronic Light-by-Light are the largest theoretical uncertainties for Standard Model muon g-2

Elliptic Glluon Tomography (Tensor Pomeron)

Phys. Rev. D 104, 094021 (2021)
Elliptic gluon distribution: correlation
between impact parameter and momentum

- Clear signature of elliptic gluon distribution within nuclei.
- Complimentary measurements at RHIC and EIC

Shinning lisht on Grluons

- Photo-nuclear measurements have been used to study QCD matter already for decades[1-3]
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010) [2] ZEUS Collaboration. Eur. Phys. J. C 2, 247-267 (1998).
[3] See refs 1-25 in [2]

Photon energies $\gtrsim 10 \mathrm{GeV}$: probe gluon distribution - Interaction through
Pomeron (two gluon state at lowest order)

Shining lisht on Gluons

- Photo-nuclear measurements have been used to study QCD matter already for decades[1-3]
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010)
[2] ZEUS Collaboration. Eur. Phys. J. C 2, 247-267 (1998).
[3] See refs 1-25 in [2]

The amplitude has three components:

$$
\begin{aligned}
& T^{\gamma^{\star} p \rightarrow V p}(x ; t)=\int_{0}^{1} \mathrm{~d} z \int \mathrm{~d}^{2} \mathbf{r} \Psi^{\gamma}(z, \mathbf{r}) \cdot \sigma^{q \bar{q}-p}(x, \mathbf{r} ; t) \cdot \\
& \text { Photon } \begin{array}{l}
\text { Diffractive } \\
\\
\\
\text { Dipole }
\end{array} \\
& \begin{array}{l}
\text { Vector } \\
V \\
\text { Deson }
\end{array} \\
& \hline
\end{aligned}
$$

Photon quantum numbers $J^{P C}=1^{--}$: Can transform into a 'heavy photon' i.e. a vector meson $\left(\rho^{0}, \phi, J / \psi\right)$ with $J^{P}=1^{-}$

Hanbury Brown and Twiss effect is a two (identical) particle interference due to quantum statistics

States must be identical to interfere, otherwise incoherent sum:
$\left.\left|D_{1 A} D_{2 B}\right| \mathrm{RB}\right\rangle+\left.D_{2 A} D_{1 B}|\mathrm{BR}\rangle\right|^{2}=\left|D_{1 A} D_{2 B}\right|^{2}+\left|D_{2 A} D_{1 B}\right|^{2}$

After entangling interference is restored:

$$
\left|D_{1 A}\right|^{2}\left|D_{2 B}\right|^{2}+\left|D_{2 A}\right|^{2}\left|D_{1 B}\right|^{2}+2 \operatorname{Re} D_{1 A} D_{2 B} D_{2 A}^{*} D_{1 B}^{*}
$$

The Breit-Wheeler Process

$-\vec{E}--\vec{B} \quad \otimes z:$ Beam Direction

For decades it was believed the polarization info was lost due to random event-by-event orientation!

Experimental access to photon polarization demonstrated

(STAR Collaboration)
Phys. Rev. Lett. 127, 052302 (2021)

- Polarization vector ξ : aligned radially with the "emitting" source
- Intrinsic photon spin converted into orbital angular momentum
- Observable as anisotropy in $e^{ \pm}$ momentum
S. Bragin, et. al., Phys. Rev. Lett. 119 (2017), 250403
R. P. Mignani, et al., Mon. Not. Roy. Astron. Soc. 465 (2017), 492

Trivial Spin-Momentum Alignment?

VM inherits the spin from photon (no helicity flip)
Diffractive -> VM momentum dominantly from the Pomeron
\rightarrow VM has no alignment between spin and momentum

Shining lisht on Gluons

- Photo-nuclear measurements have been used to study QCD matter already for decades[1-3]
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
[2] ZEUS Collaboration. Eur. Phys. J. C 2, 247-267 (1998).
[3] See refs 1-25 in [2]

Measurements from H1, ZEUS etc. explored proton via diffractive ρ^{0} and ϕ production

Past Photo-Nuclear \mathbb{M} easurements

- STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the

Line shape results from
amplitude level interference:
$\rho^{0} \rightarrow \pi^{+} \pi^{-}+$Drell Söding
(direct $\pi^{+} \pi^{-}$) $+\omega \rightarrow \pi^{+} \pi^{-}$
$\propto\left|\frac{\sqrt{m_{\pi \pi} m_{\rho} \Gamma\left(m_{\pi \pi}\right)}}{m_{\rho}^{2}-m_{\pi \pi}^{2}+i m_{\rho} \Gamma\left(m_{\pi \pi}\right)}+\frac{f_{I}}{2}\right|^{2}$,

STAR Collaboration et al. Phys. Rev. Lett. 89, 272302 (2002). STAR Collaboration et al. Phys. Rev. Lett. 102, 112301 (2009). STAR Collaboration et al. Phys. Rev. C 96, 054904 (2017).

I will take just this one experiment, which has been designed to contain all of the mystery of quantum mechanics, ... Any other situation in quantum mechanics, it turns out, can allways be explained by saying, "Your remember the case of the experiment with the two holes? It's the same thing .
-Richard Feynman

Whem:

