

Search for collective behavior in very small and in large colliding systems

SANDRA S. PADULA (ON BEHALF OF THE CMS COLLABORATION)

SPRACE - UNESP

Highlights (two complementary measurements)

Search for collectivity in very small system

pushing (ridge) correlation measurements to lowest possible system sizes

Measure of the thermodynamic properties of the QGP

□ in ultracentral PbPb collisions

Search for collectivity in single jets

Surprises at the start of LHC era

Starting of LHC era brought intriguing surprises

- Collectiviy in small systems?
 - ridge-like structure in pp
 confirmed in PbPb
 new surprise in pPb

Is there a limit on the system size? And...

- From how small of a system can partonic collectivity emerge?
- True surprise or consequence of strongly coupled nature of QCD?
- Can hydrodynamics be generalized for non perturbative QCD processes?

Is there a limit on the system size? And...

- From how small of a system can partonic collectivity emerge?
- True surprise or consequence of strongly coupled nature of QCD?
- Can hydrodynamics be generalized for non perturbative QCD processes?

Ridge-like studies in even smaller systems

2D correlation studies in e⁺e⁻ (PRL 123 212002)

final state with N_{ch}~30
 too few particles?

Even smaller system:

study single jets fragmenting into high multiplicity final state!

- Postulate (A. Baty, P. Gardner, W. Li, Phys. Rev. C 107 064908)
- strongly interacting QGP-like state can be formed by systems initiated by single quark or gluon propagating through QCD vacuum a/a

2D ($\Delta\eta^*$, $\Delta\phi^*$) Particle Correlation **CMS** preliminary 138 fb⁻¹ (pp 13 TeV) $< N_{ch}^{j} > = 26$ Anti-k, R=0.8 $p_{\tau}^{jet} > 550$ $|\eta^{jet}| < 1.6$ d²N^{palr} dΔφ^{*}dΔη^{*} - <mark>₽</mark>0.1 Øø∗ M $0.3 < j_{\tau} < 3.0 \text{ GeV}$ \rightarrow particle dynamics \rightarrow similar to Min Bias events in the beam axis: away side: enhancement at $\Delta \phi^* = \pi$ \circ peak at $(\Delta \varphi^*, \Delta \eta^*) = (0, 0)$

9

- highlighted area (left) \rightarrow study of long range $\Delta \eta^*$ projections in $\Delta \varphi^*$
- no long-range (ridge-like) structure
- behavior in $\Delta \phi^* \rightarrow \text{similar to } h^+h^-$

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-03 17:13:35.770304 GMT Run / Event / LS: 320809 / 369847775 / 233

 $p_T > 1.5 \text{ GeV}$

Selecting jets: p^T > 550 GeV |η| < 1.6

> 100,000,000 Total

Top 2,500 by Nch...

2D correlation for top N_{ch} jets

Possible "ridge" with high-multiplicity jets?

q/g

Is the "rigde" seen in MC?

$(|\Delta \eta^*| > 2)$ Correlations: 1D $\Delta \phi^*$ Is the "rigde" seen in MC?

Results: ($|\Delta \eta^*| > 2$) Correlations: 1D $\Delta \phi^*$

Results: evolution of v_2 {2}

- □ linear fit for last 3 points in MC and Data → slope extracted
- □ comparing Data to Sherpa, PYTHIA8 in 0.3 3.0 & 0.5-3.0 GeV j_T →
 - slope deviates from MC: Significance > 5σ
- □ above $N_{jch} \sim 80 \rightarrow in-jet v_2\{2\}$ w.r.t to jet axis
 - increases across 3 j_T ranges in Data
 - decreases in Sherpa and PYTHIA8

Summary 1

 \Box In-jet v₂{2} w.r.t to the jet axis

- increases across 3 j_T ranges in Data
- decreases in Sherpa and PYTHIA8

Ink to <u>CMS-PAS-HIN-21-013</u>

Thermodynamic properties in UCC

Measurements of QGP properties

Speed of sound

- □ fundamental property of any medium
 - in fluids → velocity of longitudinal compression wave propag. in medium
 - $c_s^2 = dP/d\varepsilon$

□ directly related to the EoS

Effective temperature $T_{\rm eff}$

(F. Gardim et al., Nature Phys. 16 (2020) 615)

- hydrodynamics simulation: $T_{\rm eff} \approx \langle p_{\rm T} \rangle / 3$ (ideal gas at rest)
 - Longitudinal expansion ⇒ $T_{\rm eff}$ smaller than the initial T_0

Lattice QCD results

Normalized pressure, entropy and energy densities vs. T

Speed of sound: extraction using AA data

F. Gardim et al., <u>Nature Physics 16 (2020) 615</u>:

□ ALICE PbPb data at 2.76 and 5.02 TeV (0-5% centrality)

□ Varied collision energy at a fixed centrality (constant *V*)

•
$$c_s^2(T_{\text{eff}}) = \frac{dP}{d\varepsilon} = \frac{sdT}{Tds}\Big|_{T_{\text{eff}}} = \frac{dl_n \langle p_T \rangle}{dl_n (dN_{\text{ch}}/d\eta)} = 0.24 \pm 0.04$$

Uncertainties: only two data points

Ultracentral (UCC) events in PbPb collisions

Based on PLB 809 (2020) 135749:

- $\Box \langle p_{\rm T} \rangle (\sim T_{\rm eff}) \text{ vs } N_{\rm ch} (\sim s = S/V)$
 - expected: $\langle p_{\rm T} \rangle$ increase at $b \approx 0$
- fixed volume (similar to previous procedure)
 - But varying $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$
- \Box slope: $\propto c_s^2$

Collision centrality

- experimentally: sum of transversal energy (E_T) in HF
- related to impact parameter (b), system volume (geometry)
- \Box For b \approx 0 (~0-1% centrality)
 - volume $V \approx \text{constant}$
 - energy density (ε) \rightarrow can fluctuate

Analysis method - observables

The c_s^2 depends on the relative variation of $\langle p_T \rangle$ vs N_{ch}

Can be extracted using

- \circ with $\langle p_{\rm T} \rangle^0$ and $N_{\rm ch}^0$ in a reference event class
 - obtained in 0-5% (as for c_s^2)
 - extrapolated to $p_{\rm T}\approx$ 0

 $\circ T_{\rm eff} \approx \langle p_{\rm T} \rangle^0/3$ in 0-5%

Analysis observables

$$\langle p_{\rm T} \rangle^{\rm norm} = \frac{\langle p_{\rm T} \rangle}{\langle p_{\rm T} \rangle^0} \text{ vs } N_{\rm ch}^{\rm norm} = \frac{N_{\rm ch}}{N_{\rm ch}^0}$$

 $\langle p_{\rm T} \rangle^0$ (used to estimate $T_{\rm eff}$)

Analysis method - $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$

To avoid other sources of correlations between $\langle p_T \rangle$ and N_{ch} Both are measured first in bins of $E_{T, sum}^{HF}$ (bin width of 50 GeV)

 \Box $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$ are corrected for tracking efficiency

 \Box Extrapolation to $p_{\rm T} \approx 0$ by fitting the spectrum in $p_T > 0.4 {
m ~GeV}$

□ After corrections, for each bin of $E_{T, sum}^{HF} \rightarrow \langle p_T \rangle^{norm}$ vs N_{ch}^{norm}

Results

Trajectum: global Bayesian analysis based on many data observables

 Uncertainties within the allowed parameter space (<u>https://arxiv.org/abs/2305.00015</u>)

Gardim et.al.: EoS from 2+1 flavors Lattice QCD (<u>PLB **809**</u> (2020) 135749)

Significant increase of $\langle p_{\rm T} \rangle$ toward UCC events as predicted by the simulations

Results

Significant increase of $\langle p_{\rm T} \rangle$ toward UCC events as predicted by the simulations

Speed of sound extracted from the fit and $T_{\rm eff}$ from $\langle p_{\rm T} \rangle^0$

Results

Speed of sound $(c_s^2) \rightarrow$ determined for 1st time with high precision in AA UCC

- □ In agreement with Lattice QCD
 - $\mu_{\rm B} \sim 0$ and 2+1 flavors
 - and with previous measurements
- Compatible with a deconfined phase at high *T*
- □ Robust method to extract c_s^2 from UCC events
 - can be used to scan of c_s² at various energies

CMS PAS HIN-23-003

Summary 2

Extracted the speed of sound for the first time using ultracentral AA collisions $\Box c_s^2 = 0.241 \pm 0.002 \text{ (stat)} \pm 0.016 \text{ (syst)}$ at $T_{\text{eff}} = 219 \pm 8 \text{ (syst)} \text{ MeV}$

Under assumptions, in agreement with Lattice QCD ($\mu_{\rm B} \sim 0$ and 2+1 flavors)

- Constraint on the QCD equation of state
- Compatible with a deconfined phase at high temperature

Robust method to extract $c_s^2 \rightarrow$ can be applied to different energies

THANK YOU!

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE SÃO PAULO RESEARCH FOUNDATION (FAPESP) GRANTS NO. 2018/01398-1 AND NO. 2013/01907-0. ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF FAPESP

EXTRA SLIDES

Search at LHC: rare jets with very high N_{ch}

Goal of analysis:

- look for evidence of in-jet collectivity_{Magnet 3.8} T
 using highest multiplicity parton jets in pp collisions at the CMS
 - Full 13 TeV pp dataset (LHC Run II)
 - High PU events: PUPPI
 - CMS is particularly good in this environment
 - >100 million jets analyzed
 - A few thousand jets at highest multiplicities

2D ($\Delta\eta^*$, $\Delta\phi^*$) Particle correlations

$$\frac{1}{N_{\rm ch}^{\rm trg}} \frac{{\rm d}^2 N^{\rm pair}}{{\rm d}\Delta\eta^* {\rm d}\Delta\phi^*} = B(0,0) \frac{S(\Delta\eta^*,\Delta\phi^*)}{B(\Delta\eta^*,\Delta\phi^*)}$$

BACKGROUND

SIGNAL

30

Evolution of $v_2{2} - 1D$ fits

Analysis method - $p_{\rm T}$ extrapolation to zero

 $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$ are corrected for tracking efficiency

Extrapolation to $p_T \approx 0$ by fitting the spectrum in $p_T > 0.4$ GeV Hagedorn function

$$\frac{dN_{\rm ch}}{dp_{\rm T}} = p_{\rm T} \left(1 + \frac{1}{\sqrt{1 - \langle \beta_{\rm T} \rangle^2}} \frac{\left(\sqrt{p_{\rm T}^2 + m^2} - \langle \beta_{\rm T} \rangle p_{\rm T}\right)}{nT} \right)$$

 \Box *m* is the pion mass and $\langle \beta_{\rm T} \rangle$, *n*, *T* are free parameters

After corrections, for each bin of $E_{T, sum}^{HF} \rightarrow \langle p_T \rangle^{norm} vs N_{ch}^{norm}$

Systematic uncertainties and cross-checks

Systematics

Tracking efficiency corrections

 \Box Extrapolation to $p_{\rm T} \approx 0$

 \Box Choice of fit range (only for c_s^2)

Main cross-checks

- □ HF energy resolution
 - Data HF energy smearing
 - Vary bin width

 \circ 50GeV \rightarrow 25GeV and 100GeV

- Efficiency correction
 - Dependence on particle species
- \Box Extrapolation to $p_{\rm T} \approx 0$
 - Use of different fit function
 - Closure using simulations