

Intensity Interferometry with optical telescopes: Recent progress and future plans

William Guerin for the "I2C consortium"

(Intensity Interferometry at Calern – and beyond!)

Institut de Physique de Nice (INPHYNI) Université Côte d'Azur & CNRS

INPHYNI, cold-atom team

Robin William Mathilde Guillaume Kaiser Guerin Hugbart Labeyrie

Géoazur, MéO team

Clément J Courde C

Julien Chabé

Former members: Nolan Matthews (Post-doc, 2021-2023) Antoine Dussaux (Post-doc, 2015-2016) Antonin Siciak

(PhD student, 2018-2021)

Lagrange (Observatoire de la Côte d'Azur)

Farrokh Jean-Pierre Olivier Vakili Rivet Lai Armando Domiciano

CMIS Our approach: SII with optical telescopes

Drawback: Large arrays of large optical telescopes will never be available

- <u>Advantages:</u> The optical quality allows using the best detectors and other photonic technologies (fibers, narrow filters, etc.)
 - The instrument can be adapted to any existing facility
 - No big issue with the sky background
- Methodology: Step-by-step progress
 - Tests and calibrations in the lab (at INPHYNI)
 - On-sky demonstrations at Calern
 - Go to bigger facilities...

The instrument

Adaptability and portability

> One astrophysical result

> Prospects

CNS Optical setup

Compact and transportable setup

- Only off-the-shelf components
- Collimated beam at the filter position
- Filter width $\Delta \lambda = 1$ nm ($\tau_c \sim 1$ ps)
- Two polarization channels
- Light injected in MMF (\emptyset = 100 µm)

So far: λ = 780 nm or 656 nm (H α)

50/50 Multimode fiber beamsplitter

To measure the zero-baseline visibility and overcome the APD dead time

APD: Single photon detector

Excelitas Quantum efficiency $\eta \sim 70 \%$ (650 nm) Max count rate $\sim 20 \text{ MHz}$ Active surface Jitter (FWHM)

Ø = 180 µm $\tau_{el}\sim 500 \text{ ps}$

TDC: Time to Digital Convertor

Swabian Instruments Cross-channel rms jitter = 12 ps Max data transfer rate = 1 Gtags/s

Spurious correlations (induced by the TDC and/or by cross talk between APDs) \rightarrow avoided using cable (electronic or optical) delays.

Measurement limited by photon statistics down to 1% (at least). Coherence time agrees with the measured spectral filter.

Matthews et al., Proc. SPIE 12183, 121830 (2022)

CMIS Data acquisition

Example with:

- 2 telescopes
- 2 polarization channels
- zero-baseline correlations on all channels
- \rightarrow 4 correlation functions at zero baseline
- \rightarrow 4 cross-correlation x 2 polarizations
 - \rightarrow 12 correlation functions on the fly
 - They're all added up for the analysis (no polarization effect expected)
 - They're all saved every 10 s, then shifted in time to compensate for the time-varying OPD, then added up.
 - We don't record (so far) all photons!

First demonstrations at C2PU: Cassegrain foyer, equatorial mount

The simplest!

(b) α Lyr.

MéO: laser-ranging telescope at Calern Ritchley-Chrétien configuration, alt-az mount, Nasmyth bench

+ derotator!

CMS Adaption to a portable telescope

Adaption to "T1M", a **portable** telescope! Newton configuration, Dobson-type az mount

+ tip-tilt correction!

Private property of David Vernet

SII between MéO and T1M

Observation of the H α envelope of γ Cas Telescope separations = 18 m, 38 m

Gaussian anisotropic envelope (disk) Results consistent with previous measurements

Matthews et al., Astron. J. 167, 117 (2023)

Adaption to SOAR

Adaption to **SOAR** (4 m, Cerro Pachon) Nasmyth focus, alt-az mount

CIERCIS

One-telescope experiment only! Only one night of observation with poor weather!

CINS SII @ Paranal

Adaption to the **Auxiliary Telescopes** (1.7 m, movable) at Cerro Paranal (ESO): More tricky: little space and it should not disturb the standard operation.

With the help of Pierre Bourget and Nicolas Schuhler (VLTI scientists)

CMS Adaptability and portability (5)

We pick up the light with a dichroic after M9 (Coudé focus). The module is fixed with magnets on a specifically-designed plate which can stay in place.

First run: maintenance stations (49 m)

CI

CMSSecond run: 3 standard stations

May 2023

Some astrophysical measurements...

S Roadmap for increasing the sensitivity

Current setup: good SNR (~10) on an unresolved magnitude 0 star in a few hours (1 night)

How to improve?

1) Improve the electronic temporal resolution

APDs (500 ps) \rightarrow SNSPDs (20 ps)

2) Multichannel measurements (wavelength multiplexing) Dispersion into 100 wavelength channels \rightarrow SNR ×10

3) Go to large telescopes ?

 $\emptyset = 1 \text{ m} \rightarrow \emptyset = 8 \text{ m}$

 \rightarrow SNR ×5

 \rightarrow 8.8 mag.

Next steps:

- Intensity interferometry with SNSPDs (collaboration with TU Delft)
- Towards wavelength multiplexing
- Long distance distribution of a sync signal
- Go to shorter wavelengths

Longer term: 2 main goals

- A visitor instrument at Paranal ?
 - → extension of the VLTI to short wavelengths (the ATs are not used one week per month!!!)
- Resolution of Sirius B (m_v = 8.4) at Hawaii ?

- Maximum baseline = 630 m: Keck (10 m) CFHT (3.6 m)
- $\lambda = 420 \text{ nm}$
- \rightarrow partial resolution

With N_{channel} = 16, τ_{el} = 20 ps, QE = 90%, throughput = 20%: SNR = 6 in 1h \bigcirc

We've got letters of support from Keck, CFHT and the Institute for Astronomy of Hawaii University. ERC proposal has been submitted...

https://inphyni.univ-cotedazur.eu/sites/cold-atoms/research/i2c