

Dielectrons at the LHC chances and challenges

Harald Appelshäuser Goethe Universität Frankfurt

for the ALICE Collaboration

WPCF 2023 - XVI Workshop on Particle Correlations and Femtoscopy & IV Resonance Workshop 2023 November 6-10, 2023, Catania, Italy

Outline

- EM probes are unique
- dielectrons are particularly unique
- the boon and bane of dielectrons at the LHC
- dielectron results in pp, p-Pb, Pb-Pb from ALICE
- let there be light: ALICE 2 and ALICE 3

Photons and dileptons

- are produced at all stages of the collison
- leave the system without strong FSI
 - messengers of QGP bulk properties and in-medium properties of hadrons

Photons or dileptons

Technical:

- Photon measurements are limited by systematics: large background from π^0 and η decays
- Dielectrons suffer from statistics (additional factor α_{EM}), systematics dominated by physical background from hadron decays

Physics:

- Photons integrate over space-time evolution, different collision stages cannot be distinguished (cf. direct photon puzzle)
- Dielectrons do as well but carry mass which can serve as a clock
- every process that produces a real photon can also produce a virtual photon
- the opposite is not true

Dileptons

 dilepton yield: space-time integral over thermal emission rate:

$$\frac{dN_{ee}}{d^4x d^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{0}^{0} \int_{0}^{0} \mathrm{Im}_{EM}(m_{ee}, q, \mu_B, T)$$

- mass dependence allows separation of collision stages
- QGP radiation dominates at $m_{ee} \gtrsim 1 \text{ GeV}$

Dileptons

 dilepton yield: space-time integral over thermal emission rate:

Dielectrons at the LHC

 Pb-Pb at the LHC produces the largest, hottest and longest-lived QGP

Dielectrons at the LHC

- Pb-Pb at the LHC produces the largest, hottest and longest-lived QGP
- Large combinatorial and physical backgrounds
- In the Intermediate Mass Region (IMR) (1—2.5 GeV/c²):
 - ► $S/B \le 10\%$
 - heavy-flavor contribution must be known within ≤ 1%

Heavy-flavour cross sections in pp

Charm and beauty contribution can be determined from a template fit to the IMR

Heavy-flavour cross sections in pp

ALICE, Phys. Rev. C102 055204 (2020)

- Charm and beauty contribution can be determined from a template fit to the IMR
- Extraction of cross sections possible but additional uncertainties introduced

Dielectron production in pp

ALICE, Phys. Rev. C102 055204 (2020)

- Charm and beauty contribution can be determined from a template fit to the IMR
- Extraction of cross sections possible but additional uncertainties introduced
- HF fit provides good description of pp dielectron results Harald Appelshäuser, WPCF 2023, Catania, Italy

- Large statistical and systematic uncertainties
- No conclusion about thermal radiation can be drawn

- Cocktail 1: N_{coll} scaled HF measurement in pp
 - at the edge of systematic uncertainty in the IMR

- Cocktail 1: N_{coll} scaled HF measurement in pp
 ➤ at the edge of systematic uncertainty in the IMR
- But: HF is modified in the final state in Pb-Pb

- Cocktail 1: N_{coll} scaled HF measurement in pp
 - at the edge of systematic uncertainty in the IMR
- Cocktail 2: based on EPS09 and HFE R_{AA}
 - Description improved, but additional uncertainties introduced

Dielectrons in Pb-Pb - models

- Cocktail 1: N_{coll} scaled HF measurement in pp
 - at the edge of systematic uncertainty in the IMR
- Cocktail 2: based on EPS09 and HFE R_{AA}
 - Description improved, but additional uncertainties introduced
 - Possible QGP contribution in the IMR not resolvable within systematic (and statistical) unertainties
 - > Comparison to models reveals slight tension in the ρ/ω region

Dielectron excess in Pb-Pb

- Cocktail 1: N_{coll} scaled HF measurement in pp
 - at the edge of systematic uncertainty in the IMR
- Cocktail 2: based on EPS09 and HFE R_{AA}
 - Description improved, but additional uncertainties introduced
 - Possible QGP contribution in the IMR not resolvable within systematic (and statistical) unertainties
 - > Comparison to models reveals slight tension in the ρ/ω region

Dielectron excess in Pb-Pb

- Cocktail 1: N_{coll} scaled HF measurement in pp
 - > at the edge of systematic uncertainty in the IMR
- Cocktail 2: based on EPS09 and HFE R_{AA}
 - Description improved, but additional uncertainties introduced
 - Possible QGP contribution in the IMR not resolvable within systematic (and statistical) unertainties
 - > Comparison to models reveals slight tension in the ρ/ω region

Dielectron excess in Pb-Pb

- Cocktail 1: N_{coll} scaled HF measurement in pp
 - > at the edge of systematic uncertainty in the IMR
- Cocktail 2: based on EPS09 and HFE R_{AA}
 - Description improved, but additional uncertainties introduced
 - Possible QGP contribution in the IMR not resolvable within systematic (and statistical) unertainties
 - > Comparison to models reveals slight tension in the ρ/ω region
 - Measurement of dielectron excess requires a cocktail-independent approach!

• DCA_{ee} allows separation of prompt from delayed dielectron sources

• Cross check: DCA_{ee} distributions in the J/ ψ region are well described by cocktail

In the IMR, cocktail uncertainties are too large to draw conclusions on thermal radiation

• Simultaneous fit of charm and prompt contribution gives hint for thermal dielectrons:

 $c\bar{c}: \quad 0.43 \pm 0.40(\text{stat.}) \pm 0.22(\text{syst.}) \times N_{\text{coll}} \text{ scaling}$ $prompt: 2.64 \pm 3.18(\text{stat.}) + 0.29(\text{syst.}) \times \text{Rapp}$ $(9.11.2023) \text{ prompt: } 2.64 \pm 3.18(\text{stat.}) + 0.29(\text{syst.}) \times \text{Rapp}$

The future is bright

Future dielectron measurements require:

- much more statistics
- significant improvement of vertex resolution

The future is bright

Future dielectron measurements require:

- much more statistics
- significant improvement of vertex resolution

ALICE 2 in Run 3 and 4
 ALICE 3 in Run 5 and 6

New TPC readout system

- GEM-based readout chambers
- new electronics, continuous readout

ALI-PERF-529718

09.11.2023

 10^{-1}

1

10

 p_{τ} (GeV/c)

- GEM-based readout chambers
- new electronics, continuous readout

New Inner Tracking System (ITS2)

- CMOS MAPS technology ٠
- better resolution, less material, faster readout

Integrated online-offline system O²

- online reconstruction Pb-Pb at 50 kHz
- highly selective data reduction ٠

ALICE 2 in Run 3:

- 47 kHz achieved in Pb-Pb and continuous readout
- factor 20 more Pb-Pb events collected in 2023 than in Run 1+2
- factor ~1000 more pp data than in Run 1+2

High-statistics dielectron measurement

ALICE 2 in Run 3+4 will allow systematic studies of prompt thermal dielectron radiation

Dielectrons with ALICE 3

- Multiply heavy-flavored hadrons: Ξ_{cc} , Ω_{cc} , Ω_{ccc}
- X,Y,Z charmonium-like states (e.g. X(3872))
- Light exotic nuclei with charm baryons and multiple hyperons up to A=6
- Thermal EM radiation, chiral symmetry restoration
- Soft theorems

Dielectrons with ALICE 3

- Multiply heavy-flavored hadrons: Ξ_{cc} , Ω_{cc} , Ω_{ccc}
- X,Y,Z charmonium-like states (e.g. X(3872))
- Light exotic nuclei with charm baryons and multiple hyperons up to A=6
- Thermal EM radiation, chiral symmetry restoration
- Soft theorems

Dielectrons with ALICE 3

- Multiply heavy-flavored hadrons: Ξ_{cc} , Ω_{cc} , Ω_{ccc}
- X,Y,Z charmonium-like states (e.g. X(3872))
- Light exotic nuclei with charm baryons and multiple hyperons up to A=6
- Thermal EM radiation, chiral symmetry restoration
- Soft theorems

Summary

- EM probes provide unique access to the hot and dense phase of the system
- Dielectrons are challenging but have a large potential with new generation of experiments
- ALICE 2 and ALICE 3 will be ideally suited for detailed precision studies:
 - Pre-equilibrium dynamics
 - QGP temperature
 - Early (initial) flow
 - Chiral mixing
 - Electric conductivity

Backup

Dileptons

dilepton yield: space-time integral over thermal emission rate:

$$\frac{dN_{ee}}{d^4x d^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \mathrm{Im}_{EM}(m_{ee}, q, \mu_B, T)$$

- mass dependence allows separation of collision stages QGP radiation dominates at $m_{ee} \gtrsim 1 \text{ GeV}$ NA60: Exponential fit yields $T = 205 \pm 12 \text{ MeV}$, i.e. $> T_c$ (no blue shift!)
- ۲

also HADES, STAR

- Thermal radiation dominated by QGP
- Consistent with initial temperature T_i =235 MeV

In p-Pb new phenomena may occur: CNM, thermal radiation

٠

- In p-Pb new phenomena may occur: CNM, thermal radiation
- Dielectron R_{pPb} compatible with N_{coll} scaled HF contribution, but also with CNM effects (EPS09) and small thermal contribution

- DCA_{ee} allows separation of prompt from delayed dielectron sources
- Pioneered by NA60 at the SPS
 - First experimental evidence for thermal dielectrons in the IMR