Investigating clustering in ¹²C with gamma-beams and a TPC detector

Robin Smith, Kristian C. Z. Haverson

Hallam

WPCF 2023 – Catania – November 8th 2023

Collaborators

M. Cwiok¹, W. Dominik¹, A. Fijałkowska¹, M. Fila¹, Z. Janas¹, A. Kalinowski¹,
K. Kierzkowski¹, M. Kuich¹, C. Mazzocchi¹, W. Oklinski¹, M. Zaremba¹, M. Gai²,
D. K. Schweitzer², S. R. Stern², S. Finch^{3,4}, U. Friman-Gayer^{3,4}, S. R. Johnson^{5,4},
T. M. Kowalewski^{4,5}, D. L. Balabanski⁶, C. Matei⁶, A. Rotaru⁶, K. C. Z. Haverson⁷,
R. Smith⁷, A. Shenfield⁷, C. Wheldon⁸, Tz. Kokalova⁸, R. A.M. Allen⁸, M. R. Griffiths⁸,
S. Pirrie⁸, and P. Santa Rita Alcibia⁸

- ¹ Faculty of Physics, University of Warsaw, Warsaw, Poland
- ² University of Connecticut, CT, USA
- ³ Physics Department, Duke University, Durham, NC, USA
- ⁴ Triangle Universities Nuclear Laboratory, Durham, NC, USA
- ⁵ Dept of Physics & Astronomy, University of North Carolina, Chapel Hill, NC, USA
 ⁶ IFIN-HH / ELI-NP, Bucharest-Magurele, Romania
- ⁷ Dept of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
- ⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, UK

- Physics case alpha clustering in ^{12}C
- Photo-excitation with gamma beams at HIgS
- Warsaw electronic TPC and experiment
- Data analysis challenges
- Event classification neural network
- Preliminary results

- Physics case alpha clustering in ¹²C
- Photo-excitation with gamma beams at HIgS
- Warsaw electronic TPC and experiment
- Data analysis challenges
- Event classification neural network
- Preliminary results

- Physics case alpha clustering in ¹²C
- Photo-excitation with gamma beams at HIgS
- Warsaw electronic TPC and experiment
- Data analysis challenges
- Event classification neural network
- Preliminary results

- Physics case alpha clustering in ¹²C
- Photo-excitation with gamma beams at HIgS
- Warsaw electronic TPC and experiment
- Data analysis challenges
- Event classification neural network
- Preliminary results

- Physics case alpha clustering in ¹²C
- Photo-excitation with gamma beams at HIgS
- Warsaw electronic TPC and experiment
- Data analysis challenges
- Event classification neural network
- Preliminary results

- Physics case alpha clustering in ¹²C
- Photo-excitation with gamma beams at HIgS
- Warsaw electronic TPC and experiment
- Data analysis challenges
- Event classification neural network
- Preliminary results

Nuclear physics – complexity to simplicity

- Atomic nuclei are a quantum many body problem
 - Ab initio calculations possible but intensive
- Develop simplified models to describe nuclear properties
 - Shell model
 - Very successful

¹²C – Shell Model to alpha clustering

S. Karataglidis, et al., Phys. Rev. C 52 (1995) 861.

- <u>0⁺ ground state</u> and <u>first</u> <u>excited 2⁺ state</u> binding energies are wellreproduced
- <u>Hoyle state</u> systematically underbound
- Synthesised in nature triple-α reaction

4 F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954).

Rotational Excitations: Nuclear Spinning Tops

- Clustered nuclei can be excited by rotating the deformed system
- Deformed nuclei possess a moment of inertia, I

•
$$E_x = E_0 + \frac{\hbar^2}{2I} J(J+1)$$

D. Jenkins, O. S. Kirsebom, Physics World, February 2013

Triangular D_{3h} Symmetry Algebraic Cluster Model

Bijker, R., & Iachello, F. (2002). *Annals of Physics*, *298*(2), 334-360. D. J. Marin-Lambarri, et. al., Phys. Rev. Lett., 113, 012502 (2014).

Rotational Excitations

Generates states:

Image credit: M. Freer

Rotational Excitations

Image credit: M. Freer

Rotational Excitations

D. J. Marin-Lambarri, et. al., Phys. Rev. Lett., 113, 012502 (2014).

Hoyle State: Breathing Mode

Generates states: 0+, 2+, 4+, 3-, 4-, 5-30 12_C **Ground State Band** 25 5-20 **Bending Band** 4 15 **Hoyle Band** 35 40 25 30 Û 5 10 15 20 J(J+1)

E* (MeV)

10

Hoyle State: Rotational band

E* (MeV)

Hoyle State: Rotational band

Measuring a 3⁻ state 11-14 MeV would support this model of ¹²C

Generates states:

Experimental challenges

- States above 10 MeV often broad
- Very broad 0⁺ state at 10 MeV (width 3 MeV) produces significant background in this region
- High density of states

Method – photo-dissociation reaction

• ${}^{12}C(\gamma,\alpha)^8Be$ ${}^{12}C(\gamma,\alpha_1)^8Be^*$

• Measuring kinematics of the final state particles elucidates angular momentum of the resonances

Zimmerman et al., Phys. Rev. Lett. 110, 152502 (2013)

Method – photo-dissociation reaction

- ${}^{12}C(\gamma,\alpha)^8Be$ ${}^{12}C(\gamma,\alpha_1)^8Be^*$
- Absorption of a photon cannot populate 0⁺ states
- Tagging decays through α + ⁸Be_{gs}(0⁺) will restrict to natural parity states (1⁻, 2⁺, 3⁻)
- Angular distributions & partial wave decomposition E1, E2, E3 cross sections
- Require high intensity gamma beam and highresolution charged particle detector (TPC)

14

HIγS facility

• Quasi-monoenergetic γ-beams

HIγS facility

- Free electron laser $-\lambda = 190 1064$ nm
- Compton backscattering increases the γ energy
- Maximum $10^{11} \gamma$ /s into 4π

H.R. Weller et. al, Progress in Particle and Nuclear Physics **62** (2009) A. Endo, Laser Pulses-Theory, Technology, and Applications. InTech, (2012)

Active volume

33 x 20 cm² (readout) x 20 cm (drift)

Charge amplification Gas Electron Multiplier (GEM) structures

Readout Planar. 3-coord

Planar, 3-coordinate, redundant strip arrays, ~1000 channels GET electronics 100 Hz triggering

Kuich, M., et al. "Active target TPC for study of photonuclear reactions at astrophysical energies." *arXiv preprint arXiv:2303.08048* (2023).

M. Ćwiok et al. Acta Phys.Pol. B, 49:509, 2018.

Gai, M., et al (2020). Nuclear Instruments and Methods in Physics Research Section A, 954, 161779.

Active volume 33 x 20 cm² (readout) x 20 cm (drift)

Charge amplification Gas Electron Multiplier (GEM) structures

Readout

Planar, 3-coordinate, redundant strip arrays, ~1000 channels GET electronics 100 Hz triggering

Active volume 33 x 20 cm² (readout) x 20 cm (drift)

Charge amplification Gas Electron Multiplier (GEM) structures

Readout

Planar, 3-coordinate, redundant strip arrays, ~1000 channels GET electronics 100 Hz triggering

Readout electrodes (strips)

Active volume 33 x 20 cm² (readout) x 20 cm (drift)

Charge amplification Gas Electron Multiplier (GEM) structures

Readout

Planar, 3-coordinate, redundant strip arrays, ~1000 channels GET electronics 100 Hz triggering

HIgS campaign – 2022

100–150 mbar pure CO₂ gas γ -beams from between 8.6 and 13.9 MeV $\sim 4 \times 10^9 \text{ y/s}$ and $\Delta E \sim 3\%$

Ćwiok, Mikołaj, et al. "Studies of photo-nuclear reactions at astrophysical energies with an active-target TPC." *European Physical Journal Web of Conferences*. Vol. 279. 2023.

Example events $- {}^{16}O(\gamma, \alpha)^{12}C$

Event-7705: Raw signals from V strips

Event-7705: Raw signals from all strips

Example events $- {}^{12}C(\gamma, \alpha_1)$

Event-8665: Raw signals from U strips Charge/bin [arb.u.] U strip no. Time bin [arb.u.]

Event-8665: Raw signals from W strips

Charge/bin [arb.u.] V strip no. 160 180 Time bin [arb.u.]

Event-8665: Raw signals from V strips

Example events $- {}^{12}C(\gamma, \alpha)^8Be_{gs}$

Event-14733: Raw signals from U strips

Event-14733: Raw signals from V strips

Event-14733: Raw signals from W strips

21

One long alpha track ⁸Be decays to two short alpha tracks with small opening angle

Example events – comparison

Event-14733: Raw signals from U strips

Event-14733: Raw signals from V strips

12(

Time bin [arb.u.]

 $^{16}O(\gamma,\alpha)^{12}C$

Analysis: Finding a ¹²C needle in a haystack

23

Analysis: Finding a ¹²C needle in a haystack

The New York Times

A.I. and Chatbots > Test A.I.'s Literary Skills Spot the A.I. Image Is This Robot Making Art? How 35 Real People Use A.I. What Are the Dangers of A.I.?

Using A.I. to Detect Breast Cancer That Doctors Miss

Hungary has become a major testing ground for A.I. software to spot cancer, as doctors debate whether the technology will replace them in medical jobs.

\equiv TIME

TECHNOLOGY

Google Builds a Brain that Can Search for Cat Videos

Save

Finally, an artificial intelligence breakthrough worth caring about.

in Share

By Eliana Dockterman | June 27, 2012

У Tweet

The Google X laboratory has invented some pretty cool stuff: refrigerators that can order groceries when your food runs low, elevators that can perhaps reach outer space, self-driving cars. So it's no surprise that their most recent design is the most advanced, highest functioning, most awesome invention ever... a computer that likes watching YouTube cats?

Okay, it's a bit more advanced than that. Several years ago, Google scientists began creating a neural network for machine learning. The technique Google X employed for this project is called the "deep

Timothy A. Clary / AFP / Getty Images

"If Artificial Neural Networks can recognise cats on YouTube videos they should be able to classify nuclear reactions in a TPC"

Save

By Eliana Dockterman | June 27, 2012

Read Later

The Google X laboratory has invented some pretty cool stuff: refrigerators that can order groceries when your food runs low, elevators that can perhaps reach outer space, self-driving cars. So it's no surprise that their most recent design is the most advanced, highest functioning, most awesome invention ever... a computer that likes watching YouTube cats?

Okay, it's a bit more advanced than that. Several years ago, Google scientists began creating a neural network for machine learning. The technique Google X employed for this project is called the "deep

Timothy A. Clary / AFP / Getty Images

Artificial Neural Network for event classification $^{16}O(\gamma,\alpha)^{12}C$ $^{12}C(\gamma,\alpha)$ Track ResNet-18 ResNeXt images Other ResNet-50 "stuff" 25

- 1. Categorise a certain number of events by hand
- 2. Use these to train the Artificial Neural Networks
- 3. Categorise larger data set using the model

Pre-processing tracks

• The hand-categorised data were split into three categories:

• U,V,W projections combined to one image, with RGB channels

Performance

• Confusion matrices compare output of testing the network (x-axis) with known classification (y-axis)

ResNet-18

ResNet-50

Performance

- 95% of the ${}^{12}C(\gamma, \alpha)$ were classified correctly
- Hand selection stage still required

ResNet-18

Preliminary results – breakup channels

Preliminary results $- {}^{12}C(\gamma, \alpha)^8Be_{gs}$

• Angular distribution of longest alpha track plotted

 $W(\theta) = \frac{3}{2}\sin^2\theta \left(3|E1|^2 + 25|E2|^2\cos^2\theta + 10\sqrt{3}|E1||E2|\cos\phi_{12}\cos\theta\right)$

Preliminary results $- {}^{12}C(\gamma, \alpha)^8Be_{gs}$

• Mainly 1⁻ with some 2⁺ component

32

Preliminary results $- {}^{12}C(\gamma, \alpha)^8Be_{gs}$

• With higher statistics, search for 3⁻

Preliminary results $- {}^{12}C(\gamma, \alpha_1)^8Be^*$

- Ambiguity over which alpha particle is emitted first
- Must analyse using Dalitz plots

Preliminary results $- {}^{12}C(\gamma, \alpha_1)^8Be^*$

Preliminary results $- {}^{12}C(\gamma, \alpha_1)^8Be^*$

Summary

- Warsaw TPC used to study clustering in ¹²C
- Gamma beams + TPC offer low backgrounds, high selectivity, 2° angular resolution
- ResNet-18 and -50 Neural Networks used for event classification
- Initial evidence of 1⁺, 1⁻ and 2⁺ strength at 13.1 MeV in ¹²C
- With higher statistics, further work needed to include E3 to angular distributions

Collaborators

M. Cwiok¹, W. Dominik¹, A. Fijałkowska¹, M. Fila¹, Z. Janas¹, A. Kalinowski¹,
K. Kierzkowski¹, M. Kuich¹, C. Mazzocchi¹, W. Oklinski¹, M. Zaremba¹, M. Gai²,
D. K. Schweitzer², S. R. Stern², S. Finch^{3,4}, U. Friman-Gayer^{3,4}, S. R. Johnson^{5,4},
T. M. Kowalewski^{4,5}, D. L. Balabanski⁶, C. Matei⁶, A. Rotaru⁶, K. C. Z. Haverson⁷,
R. Smith⁷, A. Shenfield⁷, C. Wheldon⁸, Tz. Kokalova⁸, R. A.M. Allen⁸, M. R. Griffiths⁸,
S. Pirrie⁸, and P. Santa Rita Alcibia⁸

- ¹ Faculty of Physics, University of Warsaw, Warsaw, Poland
- ² University of Connecticut, CT, USA
- ³ Physics Department, Duke University, Durham, NC, USA
- ⁴ Triangle Universities Nuclear Laboratory, Durham, NC, USA
- ⁵ Dept of Physics & Astronomy, University of North Carolina, Chapel Hill, NC, USA
 ⁶ IFIN-HH / ELI-NP, Bucharest-Magurele, Romania
- ⁷ Dept of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
- ⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, UK

