

Event-by-event Hadron Yield Fluctuations in Pb—Pb Collisions at $\sqrt{s}=2.76~$ TeV with ALICE

Claude A. Pruneau for the ALICE Collaboration Wayne State University

Outline

- Goal:
 - Search for DCCs in Kaon sector w/ scaled $\nu_{\rm dyn}$
- Methodology + experimental Details,
- ALICE Results,
- DCC, DIC Models,
- Summary

ALICE Papers

- Phys. Rev. Lett. 110 (2013) 15, 152301
- Eur. Phys. J.C 79 (2019) 3, 236
- Phys. Lett. B 832 (2022) 137242, arXiv:2112.09482

Motivations

Search for (Strange) Disoriented Chiral Condensates

Baryon chemical potential ($\mu_{\rm B}$)[GeV]

- Two QCD Transitions:
 - Confinement/Deconfinement
 - Chiral Symmetry
 - Broken in hadron phase,
 - Partially restored in QGP state (?)
 - Consequence: Disoriented Chiral Condensates (DCC)
- Do DCC exist?
 - Nature of chiral phase transition
 - Vacuum structure of strong interaction.

Sigma Model - Pion & Kaon Sectors

For 2nd order phase transition in QCD: Landau-Ginzburg free energy w/ 2 massless quarks

$$F = \int d^3x \left[\frac{1}{2} \partial^i \phi^\alpha \partial_i \phi^\alpha \frac{\mu^2}{2} \phi^\alpha \phi_\alpha \frac{\lambda}{4} \left(\phi^\alpha \phi_\alpha \right)^2 \right]$$

K.L. Kowalski, C.C. Taylor, <u>hep-ph/9211282</u> K. Rajagopal, F. Wilczek, Nucl.Phys. B399 (1995) 395

> μ : renormalized mass (*T*) λ : strength of coupling

Rewritten in terms of σ and $\vec{\pi}$ fields ("Mexican-hat" potential).

• Condensates:

- 2 flavors: $\sigma \propto \langle \bar{u}u + \bar{d}d \rangle$
- 3 flavors: $\sigma \propto \cos \theta \langle \bar{u}u + \bar{d}d \rangle + \sin \theta \langle \bar{s}s \rangle$

• "Normal Vacuum":

- π^+, π^-, π^0 equally probable.
- $K^+, K^-, K^0, \overline{K}^0$ equally probable
- Chiral symmetry restored at high-T
- **Quenching to low-***T*:
 - New field "orientation"
 - Disoriented Chiral Condensate (DCC)

Disoriented Chiral Condensate (DCC) K.L. Kowalski, C.C. Taylor, <u>hep-ph/9211282</u> K. Rajagopal, F. Wilczek, Nucl.Phys. B399 (1995) 395.

DCC: Pions & Kaons Yield Fluctuation

- •"Normal Vacuum":
- π^+ , π^- , π^0 equally probable.

•
$$f_{\pi^0} = \frac{N_{\pi^0}}{N_{\pi^0} + N_{\pi^-} + N_{\pi^+}};$$

- $P(f_{\pi^0}) = B(1/3; N)$
- K⁺, K⁻, K⁰, \overline{K}^0 equally probable

•
$$f_{K^0} = \frac{N_{K^0} + N_{\bar{K}^0}}{N_{K^0} + N_{\bar{K}^0} + N_{K^-} + N_{K^+}}$$

• $P(f_{K^0}) = B(1/2; N)$

- DCC:
 - Fluctuations of π^0 vs. π^+ , π^- : **Pion DCC**.
 - "Pulse" of low $p_{\rm T}$ pions w/ $P(f_{\pi^0}) = 0.5/\sqrt{f}$
 - Fluctuations of K^0 , \overline{K}^0 vs. K^+ , K^- : Kaon DCC.
 - "Pulse" of low $p_{\rm T}$ kaons w/ $P(f_{\rm K^0}) = 1$

Historical context

Past theoretical and experimental studies

- Found 138 publications on DCCs in <u>inspirehep.net</u>
- Mostly theoretical works on DCCs in the pion sector
 - Evidences for New Type of Cosmic Ray Nuclear Interactions Named CENTAURO, M. Tamada, Nuovo Cim B41 (1977) 245.
 - Explosive Quark Matter and the CENTAURO Event, J.D. Bjorken and L. McLerran, PRD 20 (1979) 2353.
 - Baked Alaska, J.D. Bjorken et al. SLAC-PUB-6109.

Few theoretical works on strange DCCs

- Is anomalous production of Omega and anti-Omega evidence for disoriented chiral condensates?, J. Kapusta, et al., PRL 86 (2001) 4251.
- Kaon and pion fluctuations from small disoriented chiral condensates, S.Gavin, J. Kapusta, PRC 65 (2002) 054910.
- Strange disoriented chiral condensate, S. Gavin, 18th WWND (2002).
- Very few experimental searches All with negative or nonconclusive results:
 - Minimax @ Tevatron: J.D. Bjorken *et al.*, PRD 55 (1997) 5667; T.C. Brooks et al., PRD 61 (2000) 032003.
 - WA98 @ SPS: T. K. Nayak, Nucl.Phys. A 638 (1998) 249c; M.M. Aggarwal, PLB 701 (2001) 300.
 - STAR @ RHIC: S.M. Dogra et al., J. Phys.G 35 (2008) 104094.
 - E864 @ AGS: P. Fachini (Thesis, Wayne State), et al., APS Meeting, (1999).

Disoriented Chiral Condensate (DCC)

DCC in Kaon Sector Detectable w/ $\nu_{dyn}[K_s^0, K^{\pm}]$

S. Gavin, J. Kapusta PRC 65 (2002) 054910

S. Gavin, et al., Nucl.Phys.A 715 (2003) 657, J.Phys.G 30 (2004) S271

Kaon isospin fluctuations measurable with $\nu_{\rm dyn}$ observable.

In this talk...

- Seek evidence for DCC-like fluctuations in the kaon sector.
 - Measurements with $\nu_{\rm dyn}^{\alpha\beta}$ observable (See next slide).
- ALICE measurements in Pb—Pb collisions @ 2.76 TeV.
 - Compare data w/ calculations from various models to establish a reference or "baseline": HIJING, AMPT, EPOS.
- Establish "basic expectations" or "normal evolution" vs. collisions centrality.
- Identify anomalous behaviors if any!

Measurement Method

 $\nu_{\rm dyn}[{\rm K}^{\pm},{\rm K}^0]$

Indicator of anomalous kaon isospin fluctuations (DCC): S. Gavin, J. Kapusta, PRC 65 (2002) 054910.

Feasibility study w/ toy model: R. Nayak, S. Dash, C.P., PRC 004900 (2020).

Experimental method

π^{\pm} , K[±], p, \bar{p} identification/classification

$n\sigma$ method:

- Event-by-event Counting
- Candidates: $n\sigma$ method

•
$$n\sigma = \frac{1}{\sigma\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)} \left[\left| \frac{\mathrm{d}E}{\mathrm{d}x} \right|_{\mathrm{measured}} - \left| \frac{\mathrm{d}E}{\mathrm{d}x} \right|_{\mathrm{particle}} \right]$$

- Similarly w/ TOF signal.
- Contamination 1-3 %

TOF velocity vs p

Identity method:

- [1] M. Gazdzicki et al., Phys. Rev.C 83 (2011) 054907
- [2] M.I. Gorenstein, Phys.Rev.C 84 (2011) 024902
- [3] A. Rustamov, Phys.Rev.C 86 (2012) 044906
- [4] C. Pruneau, Phys.Rev.C 96 (2017) 5, 054902
- [5] C. Pruneau, Alice Ohlson, Phys.Rev.C 98 (2018) 1, 014905

$K^{\pm}\,\text{vs.}\,K^0$ fluctuation analysis

K_s^0 identification & selection

ALICE, Phys. Lett. B 832 (2022) 137242

- Standard ALICE topological (V0) selection criteria,
 - See backup for details.
- Invariant mass selection,
- Kinematic selection:
 - *y* < 0.5,
 - 0.4 < $p_{\rm T}$ < 1.5 GeV/c.
- Event-by-event Counting:
- Candidates:
 - $0.48 < M_{inv}(\pi^+\pi^-) < 0.515 \text{ GeV}/c^2$
 - Contamination 1-4 %
- Background (fluctuations) estimate:
 - From side bands

ALI-PUB-530601

10

Expected Collision Centrality Evolution?

Net charge fluctuations

ALICE, Phys. Rev. Lett. 110 (2013) 15, 152301

• Magnitude of HIJING prediction "incorrect",

But basic trend OK.

- Approximate 1/N scaling observed.
- Corroborate earlier observations by STAR [2].

[1] C.P., S. Gavin, S. Voloshin, PRC 66 (2002) 044904
[2] STAR, Phys.Rev.C 79 (2009) 024906
[3] S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076 (2000)

Indicator of deconfinement [3] $Q = N_{+} - N_{-}$ $D = \langle N_{\rm ch} \rangle \langle \delta R^{2} \rangle \approx 4 \frac{\langle \delta Q^{2} \rangle}{\langle N_{\rm ch} \rangle}$ $D' = \langle N_{\rm ch} \rangle \nu_{(+-,\rm dyn)}^{\rm corr} + 4.$

Expected collision centrality evolution?

Mixed species yield fluctuations

ALICE, Eur. Phys. J.C 79 (2019) 3, 236 Analysis w/ Identity Method [1-5]

Shown: scaled $\nu_{dyn}^{\alpha\beta}$

[1] M. Gazdzicki et al., Phys. Rev.C 83 (2011) 054907
[2] M.I. Gorenstein, Phys.Rev.C 84 (2011) 024902

[3] A. Rustamov, Phys.Rev.C 86 (2012) 044906 [4] C. Pruneau, Phys.Rev.C 96 (2017) 5, 054902

[5] C. Pruneau, Alice Ohlson, Phys.Rev.C 98 (2018) 1, 014905

 π^{\pm} vs. K^{\pm} Approximate 1/N scaling observed π^{\pm} vs. **p**, **p** Sign change **Scaling violation** Κ[±] vs. **p**,**p** Approximate 1/N scaling observed

ALICE, Phys. Lett. B 832 (2022) 137242

Combinatorial background and correction

- $N_{\rm c}$: Number of K[±]
- $N_{\rm s}$: Number of signal ${\rm K}_{\rm s}^0$
- $N_{\rm b}$: Number of background pairs

$$N_0 = N_{\rm s} + N_{\rm b}; \quad f_b = N_b / N_0$$

Use "side windows" to estimate yield of background in the signal region. Example:

$$\frac{\langle N_{\rm s}(N_{\rm s}-1)\rangle}{\langle N_{\rm s}\rangle^2} = \frac{\langle N_0(N_0-1)\rangle}{\langle N_0\rangle^2} - \frac{2f}{\left(1-f\right)^2} \frac{\langle N_0N_{\rm b}\rangle}{\langle N_0\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle \langle N_{\rm b}\rangle} + \frac{f^2}{\left(1-f\right)^2} \frac{\langle N_{\rm b}N_{\rm b}\rangle}{\langle N_{\rm b}\rangle \langle N_{\rm b$$

Corrected ν_{dyn} based on side mass windows

$$\nu_{\rm dyn}^{\rm corrected} = \frac{\langle N_{\rm c}(N_{\rm c}-1) \rangle}{\langle N_{\rm c} \rangle^2} + \frac{\langle N_{\rm s}(N_{\rm s}-1) \rangle}{\langle N_{\rm s} \rangle^2} - 2 \frac{\langle N_{\rm c}N_{\rm s} \rangle}{\langle N_{\rm c} \rangle \langle N_{\rm s} \rangle}$$

Experimental method

ALICE, Phys. Lett. B 832 (2022) 137242

Closure test

- Test performed with HIJING + ALICE/GEANT
- Analysis done at
 - Generator level (Gen)
 - GEANT processed + full reconstruction (Reco)

Seek evidence for DCCs in the strange sector

ALI-PUB-530604

 $\nu_{\rm dyn}^{\rm K^+K^-} < 0 \rightarrow \rm K^+K^-$: pair creation dominance; Data & models feature approx. 1/N scaling; Models qualitatively reproduce data.

 $\alpha = \left(\langle \mathbf{K}_{s}^{0} \rangle^{-1} + \langle \mathbf{K}^{\pm} \rangle^{-1} \right)$

ALI-PUB-530607

strong $\alpha \propto 1/N$ scaling vibration; All models feature α scaling and underpredict data.

Where is the excess (scaling violation) from?

Exploit HIJING approximate 1/N scaling Study ratios of data to HIJING for three terms of $\nu_{\rm dyn}$

- Variance terms have little to no centrality dependence.
 - •Approx.1/N scaling.
- Covariance term varies by more than 20% with centrality.
- Excess of $\nu_{\rm dyn}$ in central collisions from the covariance term.
 - Expected from fluctuations caused by DCC fluctuations.

$K^{\pm}\,\text{vs.}\,K^0$ fluctuations

ALICE, Phys. Lett. B 832 (2022) 137242

p_{T} Range Dependence ??

DCC expected to be more prominent at lower $p_{\rm T}$

Study $p_{\rm T}$ dependence of $\nu_{\rm dyn}[K_s^0 K^{\pm}]$

- $\nu_{\rm dyn}[K_s^0K^{\pm}]$
- Data:
- \bullet Scaling violation in both $p_{\rm T}$ ranges
- \bullet Marginally weaker at "higher" $p_{\rm T}$
- $\bullet\,p_{\rm T}$ dependence within systematic errors.
- HIJING:
 - Amplitude exhibits small (finite) dependence on $p_{\rm T}$ range
- No evidence for a DCC "surge" at low $p_{\rm T}$.

K^{\pm} vs. K^0 fluctuations

ALICE, Phys. Lett. B 832 (2022) 137242

Rapidity Range Dependence

Not readily compatible with DCC production.

DCC & DIC Theoretical Models

- J. Kapusta, S. Pratt, M., Singh, Phys.Rev.C 107 (2023) 014913.
- DCC: Disoriented Chiral Condensate Model
- Examined several scenarios of kaon production, e.g., charge conservation effects, Bose symmetrization, resonance decays, degenerate kaons from condensates.
- Concluded condensates provide the only way to explain ALICE results.
- J. Kapusta, S. Pratt, M., Singh, 2306.13280 [hep-ph]
- DIC: Disoriented Isospin Condensate Model
- "If the scalar condensate, which is typically associated with chiral symmetry, is accompanied by an isospin=1 field, then the combination can produce large fluctuations where $\langle \bar{u}u \rangle \neq \langle \bar{d}d \rangle$.
- Hadronizing strange and anti-strange quarks might then strongly fluctuate between charged (us, su) and neutral (ds or sd) kaons"

Source of K^{\pm} vs. K^0 fluctuations scaling anomaly

DCC or DIC?

J. Kapusta, S. Pratt, M., Singh, 2306.13280 [hep-ph]

- I = 0 iso-singlet: $(\langle \bar{u}u \rangle + \langle \bar{d}d \rangle)/\sqrt{2}$
 - Lowest excitation: $f_0(500)$ or σ meson.
- I = 1 iso-triplet: $\langle \bar{d}u \rangle$, $(\langle \bar{u}u \rangle \langle \bar{d}d \rangle)/\sqrt{2}$, $\langle \bar{u}d \rangle$
 - Lowest excitations: a_0^+ , a_0^0 , a_0^- , i.e, $a_0(980)$
- If only I = 0 field were present,
 - It should couple equally to charged and neutral kaons.
- If both I = 1, $I_3 = 0$ and I = 0, $I_3 = 0$ contribute in similar amounts,
 - They could combine to form nearly all $\langle \bar{u}u \rangle$ or all $\langle \bar{d}d \rangle$ condensates.
 - Provides seed for the formation of charged and neutral kaons, respectively... leading to isospin kaon fluctuations.
 - Authors given concrete estimates of number of DIC needed to explain measured values given the observed number of kaons.
- "Although the DIC mechanism investigated here is speculative, it seems to be the least questionable explanation for the ALICE measurement of $\nu_{\rm dyn}$ thus far".

Summary.

- Measurements of **yield fluctuations/correlations** with $u_{\rm dyn}^{\alpha\beta}$ observable
 - Pb Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$
- Approximate 1/N scaling for several species pairs ...
 - h^+ vs. h^- (charged hadrons); π^\pm vs. K^\pm ; p, \bar{p} vs. K^\pm ; K^+ vs. K^-
 - Data for h^+ vs. h^- and ${\rm K}^+$ vs. ${\rm K}^-$ approximately matched by models
- Strong 1/N scaling violations in
 - π^{\pm} vs. p, \bar{p}
 - Data not described by available MC models; Evolution NOT understood.
 - K^{\pm} vs. K^0
 - Data not described by available MC models.
 - But $p_{\rm T}$ dependence of ν_{dyn} NOT strong/compelling in support of DCC.
 - Scaling violation compatible with DCC or DIC production.
- Interpretation in terms of DCCs or DICs still highly speculative...
 - Strong interest in extending measurements to other systems/energies and more differential measurements.

Backup Materials

K^{\pm} vs. K^0 fluctuation analysis

K_s^0 Identification & Selection

- Standard ALICE Topological (V0) selection criteria
 - Decay length $< 3c\tau$
 - cos(PA) > 0.99
 - Armenteros cut: $p_T^{ARM} > 0.2|\alpha|$
 - DCA_{pv} > 0.1cm
 - $\nu_{\rm dyn}$ approximately robust
 - Invariant mass selection criterion
 - 0.48 < $M_{\rm inv}$ ($\pi^+\pi^-$) < 0.515 GeV/ c^2
 - Use $p_{\rm T}$ dependent efficient correction
- Kinematic selection criterion (acceptance)
 - y < 0.5
 - $0.4 \leq \ p_{\rm T} < 1.5~{\rm GeV/c}$

