Constraining the light (anti)nuclei production in and out of jets in small systems with ALICE

Marika Rasà¹ on behalf of the ALICE Collaboration

INFN

Università di Catania N WPCF

2023

1. University and INFN, Catania

.ICE

Why studying light (anti)nuclei?

- Light (anti)nuclei are produced in highenergy hadronic collisions at the LHC
- Their production mechanism is still not understood
- Two phenomenological models:
 - Statistical hadronization
 - Coalescence

Why studying light (anti)nuclei?

- Light (anti)nuclei are produced in highenergy hadronic collisions at the LHC
- Their production mechanism is still not understood
- Two phenomenological models:
 - Statistical hadronization

Focus on it

Simple coalescence model

S. T. Butler et al., Phys. Rev. 129 (1963) 836

- If (anti)nucleons are close in phase space and match the spin states, they can form an (anti)nucleus
- Coalescence parameter *B*_A is the key observable:

- Coalescence parameter depends on both the source size and radial extension of the nucleus wave function
- Wigner function formalism

 $N_{A} = g_{a} \cdot \int d^{3}x_{1} \dots d^{3}x_{A} \cdot d^{3}k_{1} \dots d^{3}k_{A} \cdot f_{1}(x_{1}, k_{1}) \dots f_{A}(x_{A}, k_{A}) \cdot W_{A}(x_{1}, \dots, x_{A}, k_{1}, \dots, k_{A})$

- Coalescence parameter depends on both the source size and radial extension of the nucleus wave function
- Wigner function formalism

$$N_{A} = g_{a} \cdot \int d^{3}x_{1} \dots d^{3}x_{A} \cdot d^{3}k_{1} \dots d^{3}k_{A} \cdot f_{1}(x_{1}, k_{1}) \dots f_{A}(x_{A}, k_{A}) \cdot W_{A}(x_{1}, \dots, x_{A}, k_{1}, \dots, k_{A})$$

- phase space distributions of nucleons \rightarrow dependence on the source size
 - Femtoscopy measurement to the source size available

- Dependence on the source size:
- Small source size \rightarrow Large B_{Λ} $(pp \sim 1 \text{ fm}, p-Pb \sim 1.5 \text{ fm})$
 - Large source size \rightarrow Small B_{A} $(Pb-Pb \sim 3-6 \text{ fm})$

- Coalescence parameter depends on both the source size and radial extension of the nucleus wave function
- Wigner function formalism

$$N_{A} = g_{a} \cdot \int d^{3}x_{1} \dots d^{3}x_{A} \cdot d^{3}k_{1} \dots d^{3}k_{A} \cdot f_{1}(x_{1}, k_{1}) \dots f_{A}(x_{A}, k_{A}) \cdot W_{A}(x_{1}, \dots, x_{A}, k_{1}, \dots, k_{A})$$

Wigner density of the bound state ightarrow dependence on the wave function

• Different wave functions available

- Coalescence parameter depends on both the source size and radial extension of the nucleus wave function
- Wigner function formalism

$$N_{A} = g_{a} \cdot \int d^{3}x_{1} \dots d^{3}x_{A} \cdot d^{3}k_{1} \dots d^{3}k_{A} \cdot f_{1}(x_{1}, k_{1}) \dots f_{A}(x_{A}, k_{A}) \cdot W_{A}(x_{1}, \dots, x_{A}, k_{1}, \dots, k_{A})$$

Wigner density of the bound state \rightarrow dependence on the wave function

M. Mahlein et al., Eur. Phys. J. C 83 (2023) 804

- Different wave functions available
- Best results for deuteron with Argonne v_{18}

In-jet and underlying event

- Constraint of the coalescence model: study production of nuclei in and out of jets
 - nucleons in jets are closer in phase space → larger coalescence probability expected wrt UE
- CDF technique:
 - Toward (|Δφ| < 60°) : contains JET and UE
 - Transverse (60° < |Δφ| < 120°) : dominated by the Underlying Event (UE)
 - Away (|Δφ| > 120°): contains RECOIL JET and UE
- Jet: Toward Transverse

T. Martin et al, Eur. Phys. J. C 76, 299 (2016)

- Most suited LHC experiment to study light (anti)nuclei production
- Excellent PID capabilities

Time Projection Chamber (TPC)

Tracking, PID via dE/dx

Jet = Toward - Transverse

- What do we need for the coalescence parameter?
- Second ingredient: (anti)proton spectra

Jet = Toward - Transverse

- Striking gap between B_2^{jet} and $B_2^{\text{UE}} \rightarrow$ compatible with the coalescence picture
- Larger gap in p–Pb collision wrt pp collisions

ALICE

B_2 in jet and UE – model comparison

ALI-PUB-533071

PYTHIA 8 Monash 13 + simple coalescence

Phys. Rev. Lett. 131 (2023) 042301

B_2 in jet and UE – model comparison

B_2 in jet and UE – model comparison

Prospect for Run 3 measurements

- [1] Phys. Rev. Lett. 131 (2023) 042301[2] JHEP 06 (2023) 027
- [3] LHCb Collaboration, JHEP 06 (2018) 100

- Simulation studies for Run 3 prospects
 - The measured p_T spectra ^{[1][2]} are parametrized and used as inputs for the simulation
- Assumed same efficiency and σ_{inel}^[3] of Run 2
- Improvement of the statistical uncertainties:
 - factor 4 for B_2^{jet}
 - factor 3 for B_2^{UE}
- **Promising results**, multi-differential measurements (e.g. vs multiplicity in the transverse region) could be performed

- Light (anti)nuclei production have been studied in depth by the ALICE experiment, in order to constraint their production mechanism
- State of the art coalescence model based on femtoscopy measurements and Wigner formalism
- The coalescence model can be tested looking at the light (anti)nuclei production in and out of jets
- Striking gap between B_2^{jet} and $B_2^{\text{UE}} \rightarrow$ compatible with the coalescence picture
- Good agreement with model comparison in pp collisions
- New studies could be performed thanks to the high integrated luminosity that will be collected at the end of Run 3

Thank you for your kind attention!

d: Phys. Rev. Lett. 131 (2023) 042301 p: JHEP 06 (2023) 027

- d/p ^{jet} is higher than d/p ^{UE}
- Higher d/p ^{jet} in p-Pb collisions wrt pp collisions
- Different particle composition \rightarrow could affect the coalescence probability

Statistical Hadronization Model

- Hadrons emitted from a system in statistical and chemical equilibrium
- T_{chem} is the key parameter
- dN/dy ∝ exp(-m/T_{chem}) → nuclei are sensitive to T_{chem} due their large mass
- Particle yield well described with a common T_{chem} of ~ 156 MeV

Andronic et al, Nature vol. 561 (2018) 321-330

251

Statistical Hadronization Model

THERMUS 4: *Comput.Phys.Commun.* 180 (2009) 84-106

GSI-Heidelberg: *Phys.Lett. B* 673 (2009) 142 SHARE 3: *Comput.Phys.Commun.* 167 (2005) 229-

- Hadrons emitted from a system in statistical and chemical equilibrium
- T_{chem} is the key parameter
- dN/dy ∝ exp(-m/T_{chem}) → nuclei are sensitive to T_{chem} due their large mass
- Particle yield well described with a common T_{chem} of ~ 156 MeV
- Comparison between measured and expected yield, evaluated with different SHM implementations
- Nuclei binding energy ~ few MeV → how can they survive?

Andronic et al, Nature vol. 561 (2018) 321-330

Eur. Phys. J. C 80 (2020) 889

Phys. Rev. C 101 (2020) 044906

• B_A is rather flat in all multiplicity classes, but increase at high p_T/A in the MB class

Comparison with models – ratio to p

- d/p and He/p ratio evolves smoothly as a function of multiplicity → dependence on the system size
- Observed saturation at multiplicity that corresponds to Pb–Pb collisions
- Ratio compared to predictions from Thermal-FIST CSM and coalescence model
- SHM and coalescence give similar prediction for d, while they diverge for ³He → need new observables!

\bigcup_{LICE} Comparison with models – B_A

- Coalescence parameter evolves smoothly with multiplicity and decreases with source size
- Different parametrization of source size as a function of dN_{ch}/dη available
- The parametrizations diverge at high multiplicity $\rightarrow B_A$ is a good observable!

Inner Tracking System (ITS)

Six concentrical layer of silicon sensors:

- 2 layers of Silicon Pixel Detectors (SPD);
- 2 layers of Silicon Drift Detectors (SDD);
- 2 layers of Silicon micro-Strip Detectors (SSD).

LHC: an (anti)nuclei factory

- At the LHC energies the same quantity of matter and antimatter are produced at midrapidity \rightarrow baryochemical potential $\mu_B \approx 0$
- Antimatter-to-matter ratio consistent with unity

0-5%

1.2

0.

³He³He

ALICE Preliminary

Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

In-jet and UE spectra

Deuteron production in events with $p_{T}^{lead} > 5 \text{ GeV}/c$

Jet = Toward – Transverse

The results are consistent with those obtained using the two-particle correlation method

PYTHIA simulation details

- PYTHIA 8.3:
 - d production via ordinary reactions
 - Energy dependent cross sections parametrized based on data
 - Reactions:
 - $p + n \rightarrow \gamma + d$ $p + p \rightarrow \pi^+ + d$ $p + n \rightarrow \pi^0 + d$ $p + p \rightarrow \pi^+ + \pi^0 + d$ $p + n \rightarrow \pi^0 + \pi^0 + d$ $n + n \rightarrow \pi^- + d$ $p + n \rightarrow \pi^+ + \pi^- + d$ $n + n \rightarrow \pi^- + \pi^0 + d$
- PYTHIA 8 Monash:
 - Simple coalescence
 - d is formed if $\Delta p < p_0$, with $p_0 = 285$ MeV/c

NIM 1032 (2022) 166632

MFT (Muon Forward Tracker)

- High-resolution silicon
 tracker installed before the
 forward absorber
- Improve muon pointing and separation of prompt and non-prompt muons

