

stituto Nazionale di Fisica Nuclear Sezione di Catania

WPCF 2023 - XVI Workshop on Particle Correlations and Femtoscopy & IV Resonance Workshop 2023

Charm and Bottom quarks dynamics in Heavy-Ion Collisions: anisotropic flows v_n and their correlations with Event-Shape Engineering technique.

Maria Lucia Sambataro

In collaboration with: Y.Sun, V. Minissale, S. Plumari, V. Greco

Dipartimento di Fisica e Astronomia 'E.Majorana'- Università degli Studi di Catania

INFN -Laboratori Nazionali del Sud (LNS)

Basic scales of charm and bottom quarks

CATANIA MODEL: QUASI-PARTICLE MODEL AND TRANSPORT THEORY

R_{AA}, V_n and V_n -V_m correlations in charm sector

Quasi Particle Model (QPM) fitting IQCD

Relativistic Boltzmann equation at finite η/s

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p)=C[f_{q},f_{g}]$$

$$p^{\mu}\partial_{\mu}f_{g}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p)=C[f_{q},f_{g}]$$

Free-streaming

field interaction $\varepsilon - 3p \neq 0$

Collision term gauged to some η/s≠ 0

HQ evolution

$$p^{\mu}\partial_{\mu}f_Q(x,p)=C[f_q,f_g,f_Q]$$

$$C[f_{q}, f_{g}, f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p_{1}'}{2E_{1}'(2\pi)^{3}} \times [f_{Q}(p_{1}')f_{q,g}(p_{2}') - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |M_{(q,g) \rightarrow Q}(p_{1}p_{2} \rightarrow p_{1}'p_{2}')| \times (2\pi)^{4} \delta^{4}(p_{1}+p_{2}-p_{1}'-p_{2}')$$

Feynman diagrams at first order pQCD for HQs-bulk interaction:

Equivalent to

viscous hydro at n/s \approx 0.1

Scattering matrices $M_{q,q}$ by QPM fit to IQCD thermodynamics

HADRONIZATION: hybrid Coalescence + fragmentation

For details: S. Plumari talk

Information from non-equilibrium: anisotropic flows $v_n(p_T)$

Elliptic flow

Triangular flow

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[\mathrm{n}(\varphi - \Psi_{\mathrm{n}})] \right\}$$

Elliptic flow v₂

 asymmetry between the in-plane and out-of-plane directions

Triangular flow v₃

 event-by-event fluctuations in the initial distributions of nucleons

$$\epsilon_{n} = \frac{\langle r_{\perp}^{n} \cos[n(\varphi - \Phi_{n})] \rangle}{\langle r_{\perp}^{n} \rangle} \qquad \Phi_{n} = \frac{1}{n} \arctan \frac{\langle r_{\perp}^{n} \sin(n\varphi) \rangle}{\langle r_{\perp}^{n} \cos(n\varphi) \rangle}$$
$$r_{n} = \sqrt{x^{2} + y^{2}} \qquad \varphi = \arctan(y/y)$$

 y^2 , $\varphi = \arctan(y/x)$

Azimuthal anisotropies depend on

- □ the interaction and coupling of heavy quarks with the medium;
- □ the initial conditions of the system, i.e.geometry of the collision;
- the fluctuations in the distributions of nucleons and gluons within the nuclei

Monte Carlo Glauber for initial condition of partons

S.Plumari et al, *Phys.Rev.C* 92 (2015) 5

Event-Shape-Engeenering technique

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

0.8

0.6

ພິ 0.4

30-50%

Pb-Pb 5,02 TeV

0.4

 $\tilde{\epsilon}$

30-50%

ESE: $v_n - v_m$ correlations

M.L. Sambataro, *Eur.Phys.J.C* 82 (2022) 9, 833

Data taken from: S. Mohapatra Nucl. Phys. A 956 (2016) 59-66

Event-shape-engeenering

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

 $q_2 = |\vec{Q}_2| / \sqrt{M}$ $\vec{Q}_2 = \sum_{i=1}^{M} e^{i2\varphi_i}$ 20 % small q_2 20 % large q_2 Large $q_2 \rightarrow \text{large } \epsilon_2$ $\epsilon_{n} = \frac{\langle r_{\perp}^{n} \cos[n(\varphi - \Phi_{n})] \rangle}{\langle r_{\perp}^{n} \rangle} \qquad \Phi_{n} = \frac{1}{n} \arctan \frac{\langle r_{\perp}^{n} \sin(n\varphi) \rangle}{\langle r_{\perp}^{n} \cos(n\varphi) \rangle}$ $r_{\perp} = \sqrt{x^2 + y^2}, \quad \varphi = \arctan(y/x)$

Discrepancy between selected v_2 and unbiased one ~ 50%

0.08 0.04

Pb - Pb 5.02 TeV

0.08

v₂

0.12

0.1

0.0

0

2 3

8

p₊ (GeV/c)

9 10

0.01

0.02

0.04

v₂

0.06

correlation for hard particles wrt bulk

ALICE collaboration, *Phys.Lett.B* 813 (2021) 136054 M.L. Sambataro, et al., *Eur.Phys.J.C* 82 (2022)

Extension to bottom dynamics: R_{AA} and $v_{(n=2,3)}$

Hadronization with coalescence + fragmentation model

- Prediction for B meson R_{AA} and V_{B} \succ
- R_{AA} and V_{p} of electrons from semileptonic B meson decay

0.14 0-10%

B coal,+fragm.

B→e coal.+fragm.

$(2\pi T)D_s$: Charm quark vs Bottom quark

From D_s we obtain (in the 1-2T_c range):

- $T_{th}(c) \sim 5 \text{ fm/c}$
- T_{th}(b) ~ 11 fm/c

- IQCD data are in M_Q→∞, so the D_s evaluated is mass independent + quenched medium (data until 2020)
- QPM use finite mass and includes dynamical fermions – D_s saturates only for M>10 GeV.

$$D_s = \frac{T}{M \gamma} = \frac{T}{M} \tau_{th}$$

Calculations with fictitious super-heavy quark staying in the $M_Q \rightarrow \infty$ limit to correctly compare to new IQCD data

Good agreement with the new IQCD data including dynamical fermions which are the more pertinent one to compare to.

M.L. Sambataro et al., e-Print: 2304.02953

Conclusions

Catania Quasi-Particle model for charm quark:

- Good agreement with experimental data for R_{AA}and v₂
- Extension to higher order anisotropic flows v_n : good description also for triangular flow v_3
- Event-Shape Engineering technique: prediction for significant v_n- v_m correlations for hard particles, similar correlation between soft and hard particles.

Extension to bottom quark dynamics:

- Good description of R_{AA} and v_2 of electrons from semileptonic B meson decay
- Prediction for v₃ different from zero in central and semi-pheripheral collisions.
- Spatial diffusion coefficient D_s(T) in good agreement with the new IQCD data which include dynamical fermions the more pertinent one to compare to.

Thanks for the attention!

14

$(2\pi T)D_s$ ratios: Charm quark vs Bottom quark

fictitious super-heavy quark staying in the $\rm M_Q \rightarrow \infty$ limit

> $D_s(M_{charm})/D_s(M)$ as a function of M/M_{charm} at T_c :

Saturation scale of Ds for $M_Q \sim 8 M_{charm} \gtrsim 10 \text{ GeV}$ Ds $(M_{charm})/Ds(M \rightarrow \infty) = 1.9$ for QPM. Ds $(M_{charm})/Ds(M \rightarrow \infty) \simeq 1.4$ for pQCD.

- Ratios at fixed mass as a function of T:
 - **b/M^{*}: about 25% in all T range**
 - c/b: about 50% at $\rm T_{c}\,$ and not smaller than 30%
 - c/M*: factor 1.5-2

M.L. Sambataro et al., e-Print: 2304.02953

$(2\pi T)D_s$: Charm quark vs Bottom quark

From D_{c} we obtain (in the 1-2T_c range):

- $T_{th}(c) \sim 5 \text{ fm/c}$
- $T_{th}^{(i)}(b) \sim 11 \text{ fm/c}$ breaking w.r.t. the relation: $T_{th}(b) = (M_b/M_c)T_{th}(c) \sim 3.3 T_{th}(c) \sim 16.5 \text{ fm/c}$

- IQCD data are in $M_Q \rightarrow \infty$, so the D_s evaluated is mass independent + quenched medium (data until 2020)
- QPM use finite mass and includes dynamical fermions

$$D_s = \frac{T}{M \gamma} = \frac{T}{M} \tau_{th}$$

From kinetic theory is expected that: $\tau_{th}(b) / \tau_{th}(c) \approx \gamma_c / \gamma_b \approx M_b / M_c$

In QPM approach $\rightarrow D_s(c)$ is 30-40% larger than $D_s(b)$ (no mass independence)

 $M{\rightarrow}$ ∞ limit is not reached for charm

M.L. Sambataro et al., e-Print: 2304.02953

D meson: Impact of large Λ_c production on R_{AA}

 $D_s(\mathbf{T})$ of charm quark that reproduces R_{AA} and v_2 gives good description of

- > Impact of Λ_c/D^0
- > Triangular flow $v_3(p_T)$.
- \succ q_2 selected anisotropic flow and spectra.

> With the same coalescence plus fragmentation model we describe the Λ_c/D^0

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

Numerical solution of Boltzmann Equation

Use Test-Particle Method to sample the phase space distribution function

 $f(\vec{x}, \vec{p}, t) = \omega \sum_{i=1}^{N_{test}} \delta^{(3)}(\vec{x} - \vec{r}_i(t)) \delta^{(3)}(\vec{p} - \vec{p}_i(t))$

 \mathbf{F}_{i} solution of Boltzmann eq. $\rightarrow\,$ Test particles solve classical Hamilton eq. of motion

$$\begin{cases} \vec{p}_i(t + \Delta t) = \vec{p}_i(t - \Delta t) + 2\Delta t \cdot \left(\frac{\partial \vec{p}_i}{\partial t}\right)_{coll} \\ \vec{r}_i(t + \Delta t) = \vec{r}_i(t - \Delta t) - 2\Delta t \cdot \left[\frac{\vec{p}_i(t)}{E_i(t)}\right] \end{cases}$$

Collision Integral mapped through a Stochastic Al

$$P_{22} = \frac{\Delta N_{coll}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{rel} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$$

 $\Delta t \square 0$ and $\Delta^3 x \square 0$: exact solution

Final phase-space of HQ + bulk parton scattering sampled according to $|M_{QCD}|^2 \square$ code test through simulations in a "box"

[Scardina, Colonna, Plumari, and Greco PLB v.724, 296 (2013)] [Xu and Greiner PRC v. 71, (2005)]

Hybrid Hadronization Model for HQs

COALESCENCE: Formula developed for the light sector [Greco, Ko, Levai PRL 90 (2003)]

FRAGMENTATION: HQs that do not undergo to Coalescence

$$\frac{dN_H}{d^2 \boldsymbol{P}_T} = \sum_f \int dz \frac{dN_f}{d^2 p_T} \frac{D_{f \to H}(z)}{z^2}$$

We use Peterson parametrization: $D_H(z) \propto \left[z \left(1 - \frac{1}{z} - \frac{\epsilon_c}{1-z} \right)^2 \right]^{-1}$ Peterson et al. PRD 27 (1983) 105

Parameter ε_{1} tuned to reproduce *D* and *B* meson spectra in pp collisions.

Plumari, Minissale, Das, Coci, Greco, EPJ C 78 (2018) no.4

Non-perturbative effects: impact of off-shell dynamics QPM vs. DQPM

Partons are dressed by non-perturbative spectral functions:

On-shell vs Off-shell energy loss

Partons are dressed by non-perturbative spectral functions:

$$A_i^{BW}(m_i) = \frac{2}{\pi} \frac{m_i^2 \gamma_i^*}{(m_i^2 - M_i^2)^2 + (m_i \gamma_i^*)^2}$$

BOX CALCULATION [T=200 MeV] FOR CHARM

The difference between on-shell and off-shell mode can be adsorbed by multiplying scattering matrix for a *k* factor