

Searches for Chiral Magnetic Effect in Xe-Xe and Pb-Pb collisions with ALICE

Andrea Danu (for the ALICE Collaboration) ~ Institute of Space Science - RO ~

Chiral Magnetic Effect (CME)

- D. Kharzeev, PLB 633, 260 (2006)
 D. Kharzeev et al., NPA 797, 67 (2007)
 D. Kharzeev et al., PRD 83, 085007 (2011)
 D. Kharzeev et al., PPNP 88, 1 (2016)
- Heavy-ion collisions: strong magnetic field (*B*~10¹⁵ T)
- Theory: QCD domains with P and CP symmetries locally broken
- CME: electric current along magnetic field
 - Charge separation perpendicular to the reaction plane
- Interpretation of the results complicated by background contributions

Observables

2-particle correlator

STAR, PRC 81, 054908 (2009)

 $\delta_{m} = \langle \cos[m(\varphi_{a} - \varphi_{b})] \rangle$

$$\langle \cos(\varphi_a - \varphi_b) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) - (\varphi_b - \Psi_{\rm RP})] \rangle$$

= $\langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle + \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} + B_{\rm out} \rangle$

Observables

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

2-particle correlator

STAR, PRC 81, 054908 (2009)

 $\delta_{m} = \langle \cos[m(\varphi_{a} - \varphi_{b})] \rangle$

 $\begin{aligned} &\langle \cos(\varphi_a - \varphi_b) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) - (\varphi_b - \Psi_{\rm RP})] \rangle \\ &= \langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle + \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} + B_{\rm out} \end{aligned}$

3-particle correlator

S. Voloshin, PRC 70, 057901 (2004)

$$\begin{split} \gamma_{m,n} = &\langle \cos(m \, \varphi_a + n \, \varphi_b - (m + n) \, \Psi_{|m+n|}) \rangle \\ &\langle \cos(\varphi_a + \varphi_b - 2 \, \Psi_{\text{RP}}) \rangle = &\langle \cos[(\varphi_a - \Psi_{\text{RP}}) + (\varphi_b - \Psi_{\text{RP}})] \rangle \\ = &\langle \cos(\Delta \, \varphi_a - \Delta \, \varphi_b) \rangle = &\langle v_{1,a} \, v_{1,b} \rangle - \langle a_{1,a} \, a_{1,b} \rangle + B_{\text{in}} - B_{\text{out}} \end{split}$$

"Flowing clusters"

Observables

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

2-particle correlator

STAR, PRC 81, 054908 (2009)

 $\delta_{m} = \langle \cos[m(\varphi_{a} - \varphi_{b})] \rangle$

$$\langle \cos(\varphi_a - \varphi_b) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) - (\varphi_b - \Psi_{\rm RP})] \rangle$$

= $\langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle + \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} + B_{\rm out} \rangle$

3-particle correlator

S. Voloshin, PRC 70, 057901 (2004)

$$\gamma_{m,n} = \langle \cos(m \varphi_a + n \varphi_b - (m + n) \Psi_{|m+n|}) \rangle$$

$$\langle \cos(\varphi_a + \varphi_b - 2\Psi_{\rm RP}) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) + (\varphi_b - \Psi_{\rm RP})] \rangle \\ = \langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle - \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} - B_{\rm out}$$

 $\textit{B}_{_{\rm in}} \, {\rm and} \, \textit{B}_{_{\rm out}}$ background contributions projected onto $\mathcal{\Psi}_{\rm RP}$ and perpendicular to it

$$B_{\rm in} - B_{\rm out} \propto v_{2,\rm cluster} \langle \cos(\varphi_a + \varphi_b - 2\varphi_{\rm cluster}) \rangle$$

Andrea Danu – WPCF2023

A Large Ion Collider Experiment

 v_2 /CME

TPC

-0.8<η<0.8

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, Ψ_n
- V0 detector
 - Triggering, centrality, Ψ_n
- Track selection
 - $0.2 < p_{T} < 5 \text{ GeV/}c, |\eta| < 0.8$
 - Pb–Pb at √s_{NN} = 5.02 TeV
 ~235M events
 - Xe–Xe at √s_{NN} = 5.44 TeV
 ~1M events

 q_2 selection

V0C

-3.7<η<-1.7

 Ψ_{2}

V0A

2.8<n<5.1

CME ESE in Pb–Pb at 5.02 TeV

November 2023

Andrea Danu – WPCF2023

7

ALI-PREL-550463

- q_2^{VOC} used to select events with 30% larger or 25% smaller v_2 than the average
 - Non-flow is greatly suppressed by the large separation in rapidity between the TPC and the V0A ($|\Delta \eta|$ >2.0)

CE

CME with ESE

- q_2^{VOC} used to select events with 30% larger or 25% smaller v_2 than the average
 - Non-flow is greatly suppressed by the large separation in rapidity between the TPC and the V0A ($|\Delta \eta|$ >2.0)
- γ_{ab} contains potential CME signal as well as background effects
 - Background contributions are suppressed at the level of v_2
- γ_{ab} depends on the event shape selection in a given centrality bin

November 2023

CME with ESE

ALI-PREL-550475

- γ_{ab} (opp-same) can be used to study the CME
 - γ_{ab} is positive for all centrality classes and decreases with centrality and v_2 (in a given centrality class)

Andrea Danu – WPCF2023

- ×10⁻³ $(\gamma_{opp} - \gamma_{same}) \times dN_{ch}/d\eta$ $\gamma_{\sf opp}$ - $\gamma_{\sf same}$ **ALICE** Preliminary **ALICE** Preliminary Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV 0.1 Pb–Pb $\sqrt{s_{\rm NN}}$ = 5.02 TeV $0.2 < p_{_{\rm T}} < 5.0 \; {\rm GeV}/c \; \; \; |\eta| < 0.8$ $0.2 < p_{_{
 m T}} < 5.0 \; {
 m GeV}/c \; \; \; |\eta| < 0.8$ ○ 0−5% 5–10% 10 - 20%20–30% 0 0-5% 0.2 30-40% 5-10% 40 - 50%10–20% 50-60% 20-30% 30-40% 40-50% 50–60% 0 0 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.12 0.06 0.1 0 0.02 0.04 0 V_2 V_2 ALI-PREL-550475 ALI-PREL-550481
 - γ_{ab} (opp-same) can be used to study the CME
 - γ_{ab} is positive for all centrality classes and decreases with centrality and v_2 (in a given centrality class)
 - γ_{ab} approximately scales with multiplicity \rightarrow large background contribution

Relating data and models

• Fit γ_{ab} (opp-same) and $\langle |B|^2 \cos(2(\Psi_B - \Psi_2)) \rangle$ (expected CME contribution to γ_{ab}) with a linear function to disentangle the potential CME signal from the background

$$P_1(v_2) = p_0(1 + p_1(v_2 - \langle v_2 \rangle) / \langle v_2 \rangle)$$

- MC Glauber simulations with parameters tuned to reproduce ALICE results
 - Calculate magnetic field at the origin using spectators with the proper time T=0.1 fm
 - $|B|^2 \cos(2(\Psi_B \Psi_2)) >$ shows a strong dependence on v_2

November 2023

Andrea Danu – WPCF2023

• Extract the CME fraction (f_{CME}) by relating the slopes of data and model fits according to

$$f_{\rm CME} * p_{1,\rm MC} + (1 - f_{\rm CME}) * 1 = p_{1,\rm data}$$

• Assumption: background contribution scales linearly with v_2 and the corresponding slope is unity

Andrea Danu – WPCF2023

CE

CME fraction

- CME fraction in 0-5% is currently statistically limited
- Combining the points from 5-60% gives
 - − f_{CME} (Glauber) = 0.0276 ± 0.0213 → 6.4% at 95% C.L.
 - f_{CME} (TRENTo) = 0.0245 ± 0.0179 → 5.5% at 95% C.L.

November 2023

Andrea Danu – WPCF2023

CME Xe–Xe vs Pb–Pb collisions ALICE, arXiv: 2210.15383

CME in Xe–Xe collisions

- γ_{ab} : consistent with charge separation
- $\delta_{\rm ab}$: background dominates

Model comparisons

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v_2 and p_T spectra of π , K, p
 - Tune the number of sources emitting balancing pairs
 - Describes fairly well the measured data points
 - Background dominates measurements
 - Not observed in Pb–Pb collisions
- Anomalous Viscous Fluid Dynamics (AVFD)
 - EbyE IC + E/M fields (field lifetime as input)
 - Tune the parameters in each centrality class to reproduce v₂ and multiplicity P. Christakoglou et al., EPJC 81, 717 (2021)
 - · Good agreement with data points
 - Signal consistent with zero
- S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

- γ_{ab} (opp-same) can be used to study CME
 - Similar values in Xe–Xe and Pb–Pb collisions (vs $dN_{ch}/d\eta$) \rightarrow large background contribution

- γ_{ab} (opp-same) can be used to study CME
 - Similar values in Xe–Xe and Pb–Pb collisions (vs $dN_{ch}/d\eta$) \rightarrow large background contribution
- CME fraction extracted using a two-component approach
 - Assumption: both signal and background scale with $dN_{ch}/d\eta (dN_{ch}/d\eta)^{xe} \Delta \gamma_{ab}^{xe} = s B^{xe} + b v_2^{xe}$
 - $dN_{ch}/d\eta$ used to compensate for dilution
 - $<|B|^{2}\cos(2(\Psi_{B}-\Psi_{2}))>$ from MC simulations

$$f_{CME} = \frac{sB}{sB + bv_2}$$

November 2023

Andrea Danu – WPCF2023

 $(dN_{cb}/d\eta)^{Pb}\Delta\gamma^{Pb}_{ab} = sB^{Pb} + bv_2^{Pb}$

- Consistent with 0 for 0-30% and then becomes positive
- Combining the points from 0-70%
 - $f_{\text{CME}}^{\text{Xe}}$ = -0.003 ± 0.010 → 2% at 95% C.L.
 - $f_{\text{CME}}^{\text{Pb}}$ = 0.147 ± 0.061 → 25% at 95% C.L.

 $f_{CME} = \frac{sB}{sB+bv_2}$

- Charge-dependent correlations have been studied with ESE and initial state models in 2018 Pb–Pb data
 - γ_{ab} (opp-same) approximately scales with v_2 and multiplicity \rightarrow large background contribution
 - CME fraction in γ_{ab} for 5-60 % is found to be
 - f_{CME} (Glauber) = 0.0276 ± 0.0213 \rightarrow 6.4% at 95% C.L.
 - f_{CME} (TRENTo) = 0.0245 ± 0.0179 \rightarrow 5.5% at 95% C.L.
- First measurement of CME in Xe–Xe collisions
 - γ_{ab} and δ_{ab} similar values as in Pb–Pb collisions within uncertainties \rightarrow large background contribution
 - CME fraction for Xe–Xe in γ_{ab} for 5-70 % is found to be
 - f_{CME} (Glauber) = -0.003 ± 0.010 \rightarrow 2% at 95% C.L.
 - f_{CME} (TRENTo) = -0.001 ± 0.012 \rightarrow 3% at 97% C.L.

THANK YOU!

CME in Xe-Xe and Pb-Pb collisions

ALICE, JHEP 09, 160 (2020)

ALICE, PRL 116, 222302 (2016) ALICE, PLB 790, 35 (2019)

- Strong dependence on the charge
- Qualitatively similar centrality dependence
 - Larger magnitude in Xe–Xe than in Pb–Pb collisions
 - Dilution effects arising from different number of particles (CME ~ 1/M)
- Similar values in Xe–Xe and Pb–Pb collisions within uncertainties (vs dN_{ch}/dη)