

Investigating collective effects in small collision systems using PYTHIA 8 and EPOS4 simulations

A. Manea (Institute of Space Science)

with: S. Basu, C. Brandibur, A. Danu, A Dobrin, V. Gonzalez, C. Pruneau

Outline

- Introducing experimental methods of flow analysis using cumulant and scalar product
- Determination of v₂ and c₂{2}, c₂{4} for EPOS4 and PYTHIA 8 and comparing results
- Comparison of balance function analysis of both event generators

Ridge in pp: first observation

- Minimum bias pp
 - Nonflow contributions
 - Near-side jet peak (+resonances, HBT effects)
 - Recoil jet in away side

Ridge in pp: first observation

- Minimum bias pp
 - Nonflow contributions
 - Near-side jet peak (+resonances, HBT effects)
 - Recoil jet in away side

- High multiplicity pp
 - Near side ridge, typical of collective systems
 - Decomposed into Fourier harmonics $1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi \Psi_n))$

Ridge in pp: first observation

- Minimum bias pp
 - Nonflow contributions
 - Near-side jet peak (+resonances, HBT effects)
 - Recoil jet in away side

- High multiplicity pp
 - Near side ridge, typical of collective systems
 - Decomposed into Fourier harmonics $1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_n))$

What is the origin of these collective effects?

Sources of collectivity

- Initial spatial eccentricities converted into momentum anisotropies via final state interactions
 - Hydrodynamics
 - Parton transport
 - Parton escape
- Initial state effects
 - Initial momentum anisotropies from initial interactions
 - Color Glass Condensate (CGC) Glasma
 - Color-field domains
 - Numerical solutions

How to disentangle different regimes?

A. Manea - WPCF23

 $\frac{1}{N_{\rm Trig}} \frac{d^2 N}{d\Delta \phi}$

0

Jet graph

C. Bierlich et al., arXiv: 2203.11601

- Macroscopic model: EPOS4
 - Core–corona model with statistical hadronization
 - Collective effects from hydrodynamical evolution of the medium

- Microscopic model: PYTHIA 8
 - QCD strings with LUND fragmentation
 - Collective effects from new processes
 - Color reconnection, <u>rope</u>
 <u>hadronization</u>, ...

Experimental methods

$$v_n \{ SP \} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}$$

Particles of Interest
(POI)
$$u_{n,x} = cos(n \phi)$$

 $u_{n,y} = sin(n \phi)$

Reference Particles
(RPs)
$$Q_{n,x} = \sum_{i} \cos(n \phi_{i})$$

 $Q_{n,y} = \sum_{i} \sin(n \phi_{i})$

-1

Experimental methods

$$v_n \{ SP \} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}$$

Particles of Interest (POI)
$$u_{n,x} = cos(n \phi)$$

 $u_{n,y} = sin(n \phi)$

Reference Particles
(RPs)
$$Q_{n,x} = \sum_{i} \cos(n \phi_{i})$$
$$Q_{n,y} = \sum_{i} \sin(n \phi_{i})$$

- Cumulant method
 - 2- and 4-particle azimuthal correlations for an event
 - Averaging over all events \rightarrow 2nd and 4th order cumulants

 $c_{n}\{2\} = \langle \langle 2 \rangle \rangle = v_{n}^{2}$ $c_{n}\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

Experimental methods

$$v_n{\text{SP}} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}$$

Particles of Interest (POI) $u_{n,x} = cos(n \phi)$ $u_{n,y} = sin(n \phi)$

- Cumulant method
 - 2- and 4-particle azimuthal correlations for an event
 - Averaging over all events \rightarrow 2nd and 4th order cumulants

$$c_{n}\{2\} = \langle \langle 2 \rangle \rangle = v_{n}^{2}$$
$$c_{n}\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$$

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

Balance function

$$A_{2}^{\alpha|\beta}(y_{1}, y_{2}) = \frac{\rho_{2}^{\alpha|\beta}(y_{1}, y_{2})}{\rho_{1}^{\beta}(y_{2})} - \rho_{1}^{\alpha}(y_{1})$$
$$B^{\alpha|\bar{\beta}}(y_{1}|y_{2}) = A_{2}^{\alpha|\bar{\beta}}(y_{1}|y_{2}) - A_{2}^{\bar{\alpha}|\bar{\beta}}(y_{1}|y_{2})$$
$$B^{\bar{\alpha}|\beta}(y_{1}|y_{2}) = A_{2}^{\bar{\alpha}|\beta}(y_{1}|y_{2}) - A_{2}^{\alpha|\beta}(y_{1}|y_{2})$$

aB/

A. Manea - WPCF23

v_n in pp collisions @ 13.6 TeV

- PYTHIA 8
 - Rope hadronization https://gitlab.com/Pythia8/releases/-/issues/80
 - Monash tune
- EPOS4
 - Full simulation (core+corona+hadronic afterburner)

- PYTHIA 8
 - Mass ordering broken for $|\Delta \eta| > 1$

- **PYTHIA 8**
 - Mass ordering broken for $|\Delta \eta| > 1$ ٠
 - Small mass ordering for $|\Delta \eta| > 2$ ٠
 - More pronounced for rope hadronization
 - No particle type grouping

PID V₂

5

5

PID v₂

- Mass ordering broken for $|\Delta \eta| > 1$
- Small mass ordering for $|\Delta \eta| > 2$
 - More pronounced for rope hadronization
- No particle type grouping

A. Manea - WPCF23

Influenced by core and hadronic afterburner

(see backup)

$c_{2}{2} and c_{2}{4}$

200

 N_{ch}

- $c_2{2} > 0$ at high multiplicities
 - Small dependence on |Δη| gap

- $c_2\{2\} > 0$ at high multiplicities
 - Small dependence on |Δη| gap
- $c_2{4} \sim 0 \rightarrow expected from Gaussian fluctuations$

A. Manea - WPCF23

20

20

- c₂{2} > 0 at high multiplicities
 - Small dependence on |Δη| gap
- $c_2{4} \sim 0 \rightarrow expected from Gaussian fluctuations$

- Different trends in EPOS than in PYTHIA
 - More pronounced at low multiplicities

Balance Function in pp collisions @ 13.6 TeV

- PYTHIA 8
 - Rope hadronization https://gitlab.com/Pythia8/releases/-/issues/80
 - Monash tune
- EPOS4
 - Full simulation (core+corona+hadronic afterburner)

Balance Function

cđi

Integral value B⁺⁻: 0.469

Integral value B⁻⁺: 0.474

0.490

0.486

06/15/17

A. Manea - WPCF23

Balance Function

Balance Function

cđi

Different trends in EPOS than in PYTHIA

A. Manea - WPCF23

Summary

- Investigate collective effects in EPOS4 and PYTHIA 8
 - Different trends for various settings
- c_2 {2} decreasing with increasing multiplicity and $|\Delta \eta|$ gap
 - Small dependence on $|\Delta\eta|$ gap
- $c_2{4} \sim 0$ at high multiplicities
 - Expected for Gaussian fluctuations
- PID v_2 : mass ordering for large $|\Delta \eta|$ gap
 - No particle type grouping
- Balance function: different trends in away side

Thank you! A. Manea - WPCF23

 c_2 {2} and c_2 {4} in PYTHIA 8

UR fiscoli

PID v_2 in PYTHIA 8

fiscati

ISS

 $c_2{2}$ and $c_2{4}$ in EPOS4

UB Fiscoli

PID v_2 in EPOS4

UR fiscoti

