Flow and hyperon polarization at RHIC BES from multi-fluid dynamics

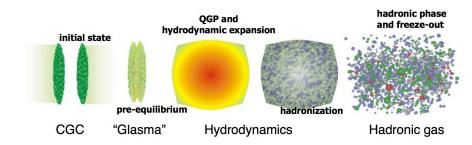
Jakub Cimerman^{1,2}, Iurii Karpenko¹, Pasi Huovinen³, Boris Tomášik^{1,2}

¹Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

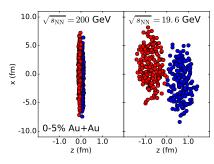
²Univerzita Mateja Bela, Banská Bystrica, Slovakia

³Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids, University of Wrocław, Poland

Jakub Cimerman, IK, Boris Tomasik, Pasi Huovinen, Phys.Rev. C 107 (2023) 4, 044902 [2301.11894 [nucl-th]] plus some new results



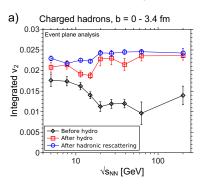
Status quo at high energies (LHC or top RHIC)

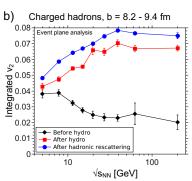

There is a relatively clear time separation between the initial state and the fluid stage.

When foraging into lower energies using the same tools:

The paradigm of "thin pancakes" gradually loses its applicability.

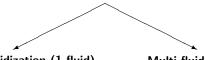
- There is no boost invariance
- Baryon and electric charge densities are significant
- Nuclei pass through each other slowly
 (the passage can last as long as subsequent fluid stage)
- There is no clear separation of the initial state and the fluid stage.


picture credit: C. Shen, B. Schenke, Phys. Rev. C 97, 024907 (2018)


From the last two bullet points:

A lot of evolution is happening before the nuclei have completely passed through each other.

Simulation: UrQMD IS + ideal hydro + UrQMD afterburner


J. Auvinen, H. Petersen, Phys.Rev.C 88 (2013), 064908

In order to see the effects of the EoS at high densities,

One must start hydro description early!

Dynamical fluidization (1 fluid)

Multi-fluid dynamics

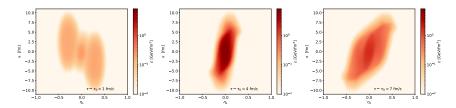
Regions of fluid phase are created dynamically, where (and when) the density is large enough.

Hydrodynamic description starts from the very beginning of the collision.

Difficulty: how to treat non-fluid and fluid phase together (in the intial state)?

Difficulty: reasonability of fluid description at the very start of heavy ion collision?

Multi-fluid model discussed in this talk:


MUFFIN: MUlti Fluid simulation for Fast IoN collisions

Think of it as a reincarnation of multi-fluid model for ion-ion collisions.

Equations of motion in multi-fluid dynamics

The incoming nuclei are represented by two blobs of cold baryon-rich fluids: projectile (p) and target (t) fluids. As the fluids inter-penetrate each other, local friction forces start to develop. The kinetic energy lost to friction is channeled into creation of a third fluid (f). The third, or fireball, fluid vaguely correspond to mesons and baryons+anti-baryons produced in the reaction.

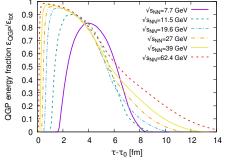
$$\begin{split} &\partial_{\mu}T_{\mathrm{p}}^{\mu\nu}(x) = -F_{\mathrm{p}}^{\nu}(x) + F_{\mathrm{fp}}^{\nu}(x), \\ &\partial_{\mu}T_{\mathrm{t}}^{\mu\nu}(x) = -F_{\mathrm{t}}^{\nu}(x) + F_{\mathrm{ft}}^{\nu}(x), \\ &\partial_{\mu}T_{\mathrm{f}}^{\mu\nu}(x) = F_{\mathrm{p}}^{\nu}(x) + F_{\mathrm{t}}^{\nu}(x) - F_{\mathrm{fp}}^{\nu}(x) - F_{\mathrm{ft}}^{\nu}(x), \end{split}$$

Snapshots of multi-fluid evolution in x- η_s plane, Au-Au collision at $\sqrt{s_{\rm NN}}=7.7$ GeV

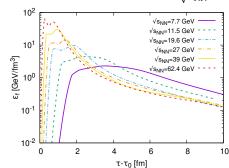
Equations of motion in multi-fluid dynamics

The incoming nuclei are represented by two blobs of cold baryon-rich fluids: projectile (p) and target (t) fluids. As the fluids inter-penetrate each other, local friction forces start to develop. The kinetic energy lost to friction is channeled into creation of a third fluid (f). The third, or fireball, fluid vaguely correspond to mesons and baryons+anti-baryons produced in the reaction.

$$\begin{split} & \partial_{\mu}T_{\mathbf{p}}^{\mu\nu}(x) = -F_{\mathbf{p}}^{\nu}(x) + F_{\mathbf{fp}}^{\nu}(x), \\ & \partial_{\mu}T_{\mathbf{t}}^{\mu\nu}(x) = -F_{\mathbf{t}}^{\nu}(x) + F_{\mathbf{ft}}^{\nu}(x), \\ & \partial_{\mu}T_{\mathbf{f}}^{\mu\nu}(x) = F_{\mathbf{p}}^{\nu}(x) + F_{\mathbf{t}}^{\nu}(x) - F_{\mathbf{fp}}^{\nu}(x) - F_{\mathbf{ft}}^{\nu}(x), \end{split}$$


The total energy of all 3 fluids is conserved:

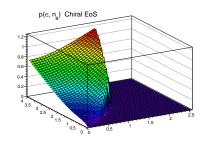
$$\partial_{\mu} \left[T_p^{\mu\nu}(x) + T_t^{\mu\nu}(x) + T_f^{\mu\nu}(x) \right] = 0.$$


the friction terms are $F_{\rm p}^{\mu}$ and $F_{\rm t}^{\mu}$ for projectile-target friction acting on p- and t-fuids, respectively, and $F_{\rm fp}^{\mu}$, $F_{\rm ft}^{\mu}$ for projectile-fireball and target-fireball friction. Currently we assume no transfer of conserved charge between the fluids.

When do we witness QGP creation in MUFFIN?

QGP fraction as a function of time at different $\sqrt{s_{NN}}$:

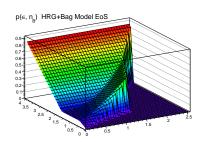
Energy density in central cell of fireball fluid as a function of time at different $\sqrt{s_{\mathrm{NN}}}$:


 \Rightarrow Significant fraction of medium in QGP phase exists down to $\sqrt{s_{\rm NN}} = 7.7$ GeV.

Equations of state in the fluid stage

Chiral model

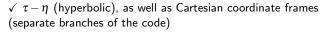
J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)


- good agreement with lattice QCD at $\mu_B=0$
- crossover type PT between confined and deconfined phases at all μ_B

Hadron resonance gas + Bag Model

P.F. Kolb, et al, Phys.Rev. C 62, 054909 (2000) (a.k.a. EoS Q)

- hadron resonance gas made of u,d quarks including repulsive meanfield
- Maxwell construction resulting in 1st order PT at all $\mu_{\rm B}$

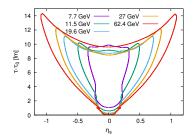


Both EoS are fairly outdated, therefore we are looking for modern alternatives.

Hydrodynamic algorithm: vHLLE

https://github.com/yukarpenko/vhlle Comput. Phys. Commun. 185 (2014), 3016 [arXiv:1312.4160] (this reference paper is outdated!)

 \checkmark shear and bulk viscosity in "Israel-Stewart" with cross-terms



- \checkmark grid resize to optimize CPU time
- \checkmark several initial state, EoS modules. All realized via classes \Rightarrow easy to plug in new IS/EoS
- \checkmark multi-fluid evolution added with very little overhead \Rightarrow see a fork by Jakub Cimerman
- ✓ Multi-threading possible for 3-fluid evolution
- ✓ using vHLLE as a library: possible (WIP)

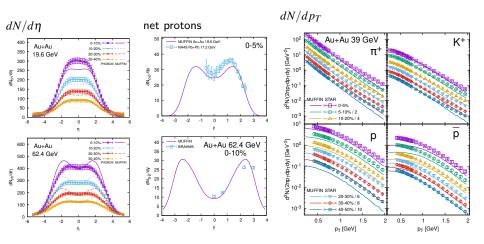
If you are interested to run the complete model yourself: https://github.com/jakubcimerman/run-MUFFIN

Fluid-to-particle transition (particlization)

- Diagonalize $T_p^{\mu\nu}(x) + T_t^{\mu\nu}(x) + T_f^{\mu\nu}(x)$
 - \Rightarrow extract energy density $arepsilon_{
 m eff}$
- construct a surface of fixed $\varepsilon_{eff} = \varepsilon_{sw}$ using CORNELIUS.

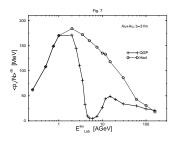
• On such surface, $\int d\Sigma_{\mu} T^{0\mu} = 0$ (Gauss theorem) \Rightarrow we use it to check the accuracy of the simulations

- Exclude parts of hypersurface which corresponds to matter flowing in
- Hadron sampling according to Cooper-Frye, with

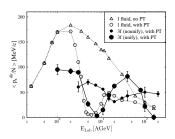

$$f(x,p) = f_p(x,p) + f_t(x,p) + f_f(x,p)$$

using SMASH-hadron-sampler

• Sampled hadrons +spectator nucleons

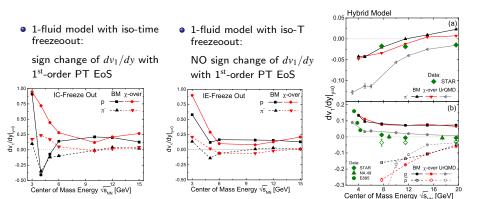

SMASH for rescatterings and resonance decays

Basic observables vs. the data

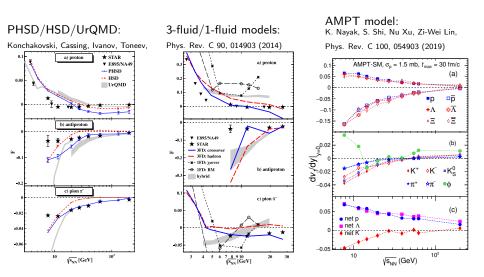

Directed flow: origins

Rischke, Puersuen, Maruhn, Stoecker, Greiner, Acta Physica Hungarica: 1, 309–322 (1995) [nucl-th/9505014]

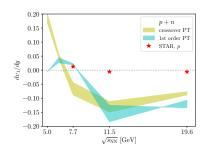
Brachmann, Soff, Dumitru, Stöcker, Maruhn, Greiner, Rischke,

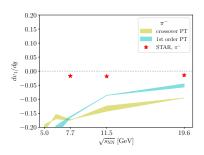

Phys. Rev. C61 (2000) 024909 [nucl-th/9908010]

The conclusion was clear: non-monotonic dependence of $v_1 \rightarrow$ phase transition.


Directed flow: further developments circa 2014

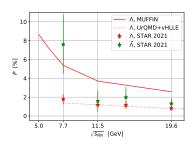
J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stöcker, Phys. Rev. C 89 (2014) 054913, arXiv:1402.7236

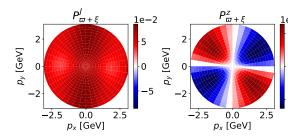



ullet Full hybrid model: no sign change of dv_1/dy , weak EoS dependence and no agreement with the data

Full-fledged models generally struggle to reproduce the v_1

Where do we stand with MUFFIN




- The directed flow is much stronger than what STAR measured
- There is no clear trend in the EoS dependece.

Hyperon polarization

Global polarization in 20-50% central Au-Au: Mean hyperon polarization is much stronger in MUFFIN as compared to STAR data

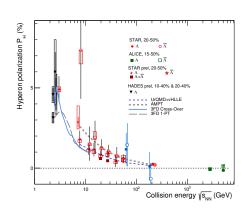
Local polarization in 20-50% central Au-Au at $\sqrt{s_{NN}}=7.7$ GeV: same patterns as observed at high energies

Hyperon polarization

MUFFIN compared to other models

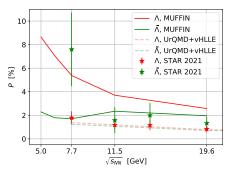
MUFFIN:

5.0

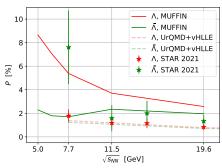

7.7

11.5

√SNN [GeV]

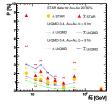

Compilation by Subhash Singha @ SQM 2022:

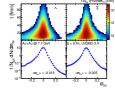
 \Rightarrow Λ polarization is stronger in MUFFIN as compared to other hydro-based models


19.6

Polarization of $\bar{\Lambda}$ vs. Λ

- MUFFIN produces strong $\Lambda \bar{\Lambda}$ splitting but with a wrong sign!
- There was a similar but much weaker trend with UrQMD+vHLLE
- Same trend in AMPT+MUSIC, Baochi Fu et al, Phys. Rev. C 103, 024903 (2021) [arXiv:2011.03740]
- ullet The splitting is only due to finite μ_B


Polarization of $\bar{\Lambda}$ vs. Λ



- MUFFIN produces strong $\Lambda \bar{\Lambda}$ splitting but with a wrong sign!
- There was a similar but much weaker trend with UrQMD+vHLLE
- Same trend in AMPT+MUSIC,
 Baochi Fu et al, Phys. Rev. C 103, 024903 (2021)
 [arXiv:2011.03740]
- The splitting is only due to finite μ_B

Correct sign of splitting in UrQMD 3.4 + coarse graining:

O. Vitiuk, L. Bravina, E. Zabrodin, Phys. Lett. B 803 (2020), 135298

... however the explanation therein sounds confusing since reported $\langle \varpi_{zx} \rangle$ is larger in magnitude for Λ than for $\bar{\Lambda}$

Conclusions

- We present the next incarnation of 3-fluid model for relativistic heavy-ion collisions at RHIC BES/FAIR/... energies.
- Different from the existing model by Ivanov, Toneev, Soldatov, there is fluctuating
 initial state, shear and bulk viscosities (implemented but not enabled yet), Monte
 Carlo hadron sampling and hadronic afterburner (SMASH). Equation of state can be
 easily swapped.
- We fit the dN/dy and p_T distributions of hadrons from RHIC BES.
- \bullet v_2 is overestimated, which presumably happens due to ideal hydro evolution
- Directed flow is much stronger than the data (same as in other models), and there is no clear EoS trend
- Global polarization is stronger than the data; splitting between $\bar{\Lambda}$ and Λ is strong but has a wrong sign.
- Outlook: construct different friction terms based on different underlying assumptions; explore viscous fluid evolution,
- plug in different equations of state to explore sensitivity to the EoS (EoS currently in use are outdated).

Backup slides

Friction terms

that we are currently using

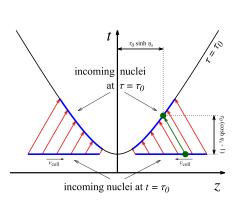
Projectile-target friction [Ivanov, Russkikh, Toneev, Phys.Rev.C 73 (2006) 044904]: Derived based on average energy-momentum transfer in *NN* scattering [L.M. Satarov, Sov. J. Nucl. Phys. 52, 264 (1990)]

$$F_{\alpha}^{\nu} = \vartheta^2 \rho_p^{\xi} \rho_t^{\xi} m_N V_{\mathrm{rel}}^{pt} [(u_{\alpha}^{\nu} - u_{\overline{\alpha}}^{\nu}) \sigma_{\mathrm{P}}(s_{pt}) + (u_p^{\nu} + u_t^{\nu}) \sigma_{\mathrm{E}}(s_{pt})]$$

where:

- $\, \cdot \, \vartheta^2 \,$ is a unification factor which suppresses the friction further when the fluids slow down with respect to each other,
- $\rho_p^{\xi}, \rho_t^{\xi}$ are generalised densities of constituents in the projectile and target fluids,
- $V_{\rm rel}^{pt}$ is a relative velocity of the p- and t- fluid cells,
- m_N is nucleon mass,
- u_{α} , $\alpha = p, t$, $\bar{\alpha} = t, p$ are 4-velocities of the fluid cells,
- \bullet σ_P, σ_E are cross-sections for momentum and energy transfer, respectively.

Friction terms (2)


Fireball-projectile/target friction [same reference]:

$$F_{f\alpha}^{\nu} = \rho_{\alpha}^{b} \xi_{f\alpha}(s_{f\alpha}) V_{\text{rel}}^{f\alpha} \frac{T_{f(eq)}^{0\nu}}{u_{f}^{0}} \sigma_{\text{tot}}^{N\pi \to R}(s_{f\alpha}),$$

where:

- $m{\circ}$ $ho_p^b,
 ho_t^b$ are baryon densities of of the projectile and target fluids,
- ullet $V_{
 m rel}^{flpha}$ is a relative velocity of the fireball and baryon-rich fluid cells,
- ullet $T_{f(eq)}^{0v}$ is energy-momentum tensor of the fireball fluid,
- $\sigma_{\text{tot}}^{N\pi \to R}$ is a pion-nucleon cross-section.
- $\xi_{f\alpha}$ is a "K-factor" (a fitting factor) for the friction term, which is intended to compensate for all the missing/incorrect physics therein, and to lead to better agreement with the data

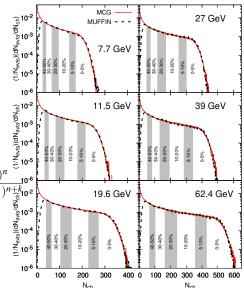
Coordinate frame and setup for multi-fluid evolution

- Nucleons from the incoming nuclei are sampled at t = t₀ surface (fixed Cartesian time).
- The nucleons are then propagated according to free-flying trajectories onto $\tau=\tau_0$ hypersurface.
- The nucleons are then melted into the fluids: their energies and momenta are distributed to nearby fluid cells using a smearing kernel:

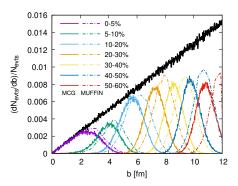
$$\begin{split} T^{0\mu}(x_{\text{cell}}, y_{\text{cell}}, \eta_{\text{cell}}) &= \sum_{i \in \text{nucleons}} p_i^{\mu} K(\Delta x, \Delta y, \Delta \eta_s) \\ N^0_{b,q}(x_{\text{cell}}, y_{\text{cell}}, \eta_{\text{cell}}) &= \sum_{i \in \text{nucleons}} \{B_i, Q_i\} K(\Delta x, \Delta y, \Delta \eta_s) \end{split}$$

with a smearing kernel:
$$K(\Delta x, \Delta y, \Delta \eta_s) = A \exp\left(-\frac{\Delta x^2 + \Delta y^2 + \Delta \eta_s^2 \tau^2 \cosh^2 \eta_s \cosh^2 y}{2\sigma^2}\right)$$

Centrality determination in MUFFIN vs. "Monte Carlo Glauber"

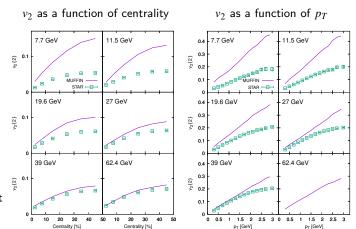

We make a comparison between:

- a semi-minimum-bias MUFFIN simulation (0 < b < 12 fm) and
- a two-component model for particle production, where $N_{\rm part}$ and $N_{\rm coll}$ come from a Monte Carlo Glauber sampling:


$$\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} = n_{pp} \left[(1-x) \frac{\langle N_{\mathrm{part}} \rangle}{2} + x \langle N_{\mathrm{coll}} \rangle \right]$$

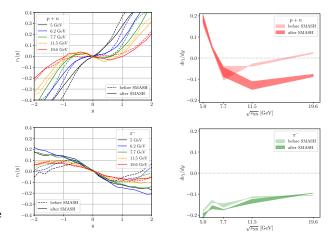
$$P_{\text{NBD}}(n_{pp}, k; n) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \frac{(n_{pp}/k)^n}{(n_{pp}/k+1)^{n+k \choose \frac{n}{2}} 10^{\circ 2}}$$

 "MCG" fits the N_{ch} distribution from a semi-minbias MUFFIN simulation with b = 0 - 12 fm


ullet we bin the generated events in centrality classes based on $dN_{
m ch}/d\eta$ at mid-rapidity:

• For each centrality class, the mean impact parameter in MUFFIN has a larger value as compared to the "Monte Carlo Glauber"

Similar findings: arXiv:2303.07919 by Kuttan, Steinheimer, Zhou, Bleicher and Stoecker


Basic observables vs. the data: v_2

Here a probable culprit is ideal fluid evolution: we haven't switched the viscosity on yet.

Directed flow in MUFFIN

effects of hadronic cascade

Final-state hadronic cascade drives the directed flow further away from the data.