

Bong-Hwi Lim on behalf of the ALICE Collaboration | 06/11/2023 University and INFN Torino

Outline

- Introduction Resonances in hadronic phase
- Hadronic resonances in ALICE
- ALICE Detector
- Highlights from recent publications
 - The ALICE experiment A journey through QCD <u>arXiv:2211.04384</u>
 - System Size Dependence of Hadronic Rescattering Effect at LHC Energies <u>arXiv:2308.16115</u>
 - $K^{*\pm}$ Production in Pb-Pb Collisions at 5.02 TeV <u>arXiv:2308.16119</u>
 - Multiplicity Dependence of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ Production in pp Collisions at $\sqrt{s}=13$ TeV <u>arXiv:2308.16116</u>
- Future studies in LHC Run3
- Conclusion

Introduction: Resonances in hadronic phase

- Resonance
 - Short life time ($\tau \sim \text{few fm}/c$)
 - Can decay within the hadronic medium
 - \checkmark Suitable tool for studying <u>hadronic medium effects</u>.

Introduction: Resonances in hadronic phase

Regeneration

pseudo-elastic scattering through resonance state

- Resonance
 - Short life time ($\tau \sim \text{few fm}/c$)
 - Can decay within the hadronic medium
 - \checkmark Suitable tool for studying <u>hadronic medium effects</u>.

Introduction: Resonances in hadronic phase

pseudo-elastic scattering through resonance state

- Resonance
 - Short life time ($\tau \sim \text{few fm}/c$)
 - Can decay within the hadronic medium
 - Suitable tool for studying hadronic medium effects. \checkmark

elastic scattering smears out mass peak

(MeV/c²)

1820 1.3

Lifetime

(fm/c)

770

Mass

(MeV/c²)

Strangeness

Hadron class

Baryon

46.3 Meson

 Multi-purpose detector at the LHC with unique <u>particle identification</u> capabilities and tracking down to <u>very low momenta</u>

 Multi-purpose detector at the LHC with unique <u>particle identification</u> capabilities and tracking down to <u>very low momenta</u>

 Multi-purpose detector at the LHC with unique <u>particle identification</u> capabilities and tracking down to <u>very low momenta</u>

Daughter tracks are selected based on the TPC/TOF PID

- <u>No secondary vertex</u> reconstructed due to the lifetime: SV of resonance = Primary vertex
- Instead, topological selection can be applied to limit the PV tracks.

Resonance analysis: Invariant mass

 Resonances are reconstructed via their invariant masses

$$M_{\rm inv} = \sqrt{(E_1 + E_2)^2 - |\vec{p}_1 + \vec{p}_2|^2}$$

 \vec{p}_{Ξ}

Resonance analysis: Invariant mass

Resonances are reconstructed via their invariant masses

$$M_{\rm inv} = \sqrt{(E_1 + E_2)^2 - |\vec{p}_1 + \vec{p}_2|^2}$$

 Uncorrelated background: estimated via eventmixing or like-sign techniques

- **Residual background:** correlated pairs or misidentified decay products, modelled by custom functions (eg. polynomial function)
- **Signal**: Fit with a Breit-Wigner or Voigtian function and the residual background
- Yields are calculated by integrating the signal function

Resonance analysis: *p*_T spectra

- *p*_T-Spectra: *p*_T differential corrected yields based on the raw yields
 - p_T -Integrated yields \rightarrow Particle yields ratio
 - Average $p_T \rightarrow$ Estimate system condition

Resonance analysis: Particle ratio

Recent publication Particle ratio: K*±/K

- Resonance yield ratio to the long-lived particle with the same quark contents
 - Similar decreasing trend to the one of K*0/K
- Model comparisons

arXiv:1906.03145

• γ_{s} Canonical Statistical Model

arXiv:1908.11730

 Hadron Resonance Gas Partial Chemical Equilibrium model

arXiv:1908.11730

 Hydrodynamic MUSIC model w/wo hadronic afterburner

Recent publication Particle ratio: K*⁰/K

Recent publication **p_-differential particle ratio: K*±/K**

- <u>*р*т dependence</u> of the rescattering effect?
- Left/Right: particle ratio K^{*±}/K, K^{*±}/ π
- Top: same system
- Bottom: double ratios of Pb–Pb to pp results $(K^{*\pm}/K)_{PbPb}/(K^{*\pm}/K)_{pp}, (K^{*\pm}/\pi)_{PbPb}/(K^{*\pm}/\pi)_{pp}$
- Suppression in <u>low p_T region</u> \rightarrow rescattering is low p_T phenomenon
- Consistent results with K*0
- Right bottom: the enhancement is more pronounced for K^{*}±/π
 - Consistent picture of larger radial flow in the central Pb–Pb collisions

Recent publication Estimating lifetime of the hadronic phase

Estimating lifetime of the hadronic phase

$$r_{\rm kin} = r_{\rm chem} \times e^{-(\tau_{\rm kin} - \tau_{\rm chem})/\tau_{\rm res}}$$

<u>Lower bound</u> on the hadronic phase lifetime

- *r*_{kin}: Particle ratio at kinetic freeze-out (Pb-Pb)
- r_{chem}: Particle ratio at chemical freezeout (pp)
- $\tau_{\rm res}$: lifetime of resonance
- Assumptions: Simultaneous freeze-out of all particles Negligible regeneration

Low mass resonances

- \rightarrow Shorter lifetime of lower bound hadronic phase
 - \rightarrow More **regeneration?**

Recent publication Kinetic freeze-out temperature

- The kinetic freeze-out temperature estimated using the fit of HRG-PCE model to the measured yields of hadrons (π , K, p, ϕ , K*)
 - Fit parameters:
 - Baryon chemical potential: 0
 - chemical freeze-out temperature: 155 MeV
 - kinetic freeze-out temperature
 - freeze-out volume
- Freeze-out temperature: <u>Increase</u> systematically while moving from central to peripheral centrality
 - Presence of the hadronic phase with a finite lifetime regardless of the colliding particle.

Recent publication Nuclear modification factor: RAA

- *R*_{AA}: Comparison of the yields with the corrected number of collisions between pp and AA collisions.
 - Left: R_{AA} is less than 1 in high p_T for both systems. \rightarrow It shows Hydro-like expansion (low p_T) and Partonic energy loss (high p_T)
 - Right: Centrality-dependent p_T-integrated R_{AA} shows same trend with charged hadrons(h[±])
 → No strong effect from jet-quenching to LF particle species composition for the leading particles

Recent publication Nuclear modification factor: RAA

- R_{AA} : Comparison of the yields with the corrected number of collisions between pp and AA collisions.
 - Left: Species dependent R_{AA} (mass range: 0.139 to 1.020 GeV/c²)
 → K^{*0}/K , K^{*±}/K show the smallest values due to the rescattering effect.
 - **Right:** Evolution of R_{AA} with centrality \rightarrow Larger suppression in larger system.

Hadronic interactions in small system

- Can we find the **rescattering/regeneration** effects even in **small systems**?
 - K*/K shows a **smooth decreasing trend** even at pp collisions

Recent publication Hadronic interactions in small system

- Can we find the **rescattering/regeneration** effects even in **small systems**?
 - K*/K shows a **smooth decreasing trend** even at pp collisions
 - $\Lambda(1520)/\Lambda$, $\Sigma^{*\pm}/\Lambda$, Ξ^{*0}/Ξ show increasing(?) trends in small systems
- No decreasing trend found from baryon resonance so far,
 Σ*± has short life time, but it is not affected. might be due to the regeneration?

Future studies LHC-Run3: Resonance in flow and jets

• Performance plots of K^{*0}, ϕ , Λ (1520) from pp 900 GeV and 13.6 TeV

More statistics → More possibilities!

- Chiral symmetry restoration using resonances (f₁, K₁(1720), Ξ(1820))^{1-PREL-548}
- Search for the **glueball candidate**
- Resonance **flow** and **Jets** to constrain the hadronic phase effect

Bong-Hwi Lim (University and INFN Torino) / WPCF-Resonance Workshop 2023

F. Bellini Wed. afternoon

2000

1.2

1.3

1.4

1.5

1.6

6 1.7 1. $M_{\rm K_c^0 K_\pi}$ (GeV/ c^2)

19/19

Conclusion

- Resonance is a useful tool for studying Hadronic Phase
- ALICE has published interesting studies:
 - Rescattering effect is dominant in large systems
 - Kinetic freeze-out temperature
 - Lifetime of the hadronic phase
 - **Regeneration** has to be considered as well!
 - Continuous evolution of the lifetime from small to large system
 - Hint of suppression in Small System
 - No decreasing trend from baryonic resonance in small system.
- Outlook: Promising amount of data from Run3!

Back up