Study of exotic f_0 and f_1 states with ALICE

INFN A MATER STUDIORUM

B

F. Bellini Catania, 8th November 2023

NPC

2023

Exotic hadrons in the light-flavour sector

Meson = color singlet state of a $q\bar{q}$ pair with u, d, or s grouped into a flavor multiplet of SU(3) [*M. Gell-Mann, 1964*]

Exotic = non-conventional

Observed states with

- known quantum numbers but
- debated structure and flavour content

f₀(980)

Diquark: PRD 67 (2003) 094011 Tetraquark: PRD 103 (2021) 1, 014010 Molecule (KK): PRD 101 (2020) 9, 094034

*f*₁(1285)

Tetraquark: Mod.Phys.Lett. A2 (1987) 771 Molecule: Phys. Rev D42 (1990) 874 Diquark: PRD 96 (2017) 5, 054012 Hybrid: Nucl.Phys.A 992 (2019) 121641

Challenging signal extraction:

- Broad widths
- Interference
- Partial-wave analysis (PWA)

INITIAL STATE

HARD SCATTERINGS

QGP FORMATION AND EXPANSION $au \sim 1 \ fm/c$

HADRON FORMATION AND FREEZE-OUT $au \sim 10 \; fm/c$

Nuclear modification > initial (cold nuclear matter) vs final-state (QGP) effects on particle production

INITIAL STATE

HARD SCATTERINGS

HADRON FORMATION AND FREEZE-OUT $au \sim 10 \; fm/c$

Nuclear modification > initial (cold nuclear matter) vs final-state (QGP) effects on particle production Flow and recombination > collective dynamics from the QGP phase and impact on hadron formation

QGP FORMATION AND EXPANSION

 $\tau \sim 1 fm/c$

INITIAL STATE

HARD SCATTERINGS

HADRON FORMATION AND FREEZE-OUT $au \sim 10 \; fm/c$

Nuclear modification > initial (cold nuclear matter) vs final-state (QGP) effects on particle production Flow and recombination > collective dynamics from the QGP phase and impact on hadron formation

QGP FORMATION AND EXPANSION

 $\tau \sim 1 fm/c$

Hadrochemistry

> hadronization, equilibration and hadronic interactions in the late stage

The ALICE detector [LHC Runs 1+2: 2009-2018]

The ALICE detector [LHC Runs 1+2: 2009-2018]

Data: pp $\sqrt{s} = 5.02$ TeV: <u>Phys. Lett. B 846 (2023) 137644</u> p-Pb $\sqrt{s_{NN}} = 5.02$ TeV: paper in preparation pp $\sqrt{s} = 13$ TeV: in progress $f_1(1285)
ightarrow \mathrm{K}^0_\mathrm{S}\mathrm{K}\pi$

B.R. = 2.25 % [PDG]

First measurement in ALICE in pp collisions at $\sqrt{s} = 13$ TeV

- Kaon and pion ID by TPC and TOF
- Topological reconstruction of K⁰_S
- invariant mass analysis
- fit with relativistic Breit-Wigner for $f_1(1285)$, $f_1(1420)$ and $\eta(1475)$

$p_{\rm T}$ -spectra in pp and p-Pb collisions

Main observables:

- p_T -dependent yields in INEL/NSD events and vs charged-particle multiplicity
- dN/dy obtained by integrating spectra over p_T and fit function for low- p_T extrapolation

f₀(980) production in MC generators

Few MC generators foresee the generation of $f_0(980)$ and none is able to fully reproduce the data

HERWIG 7.2

- J. Bellm et al., Eur. Phys. J. C 76(4) (2016) 196
- cluster hadronisation model

AMPT + coalescence

An Gu et. al., Phys. Rev. C 101 (2020) 024908

- $s\overline{s}$, $u\overline{u}d\overline{d}$ by quark coalescence
- KK molecule by K coalescence

Note: PYTHIA and EPOS in default configurations do not produce $f_0(980)$

f₀(980)/π compared to ρ (770)/π[±] and η/π⁰

$f_0(980)$ production compared to p and $\phi(1020)$

- f_0/p ratio increasing with $p_T \rightarrow$ decreasing baryon-to-meson ratio
- Similar production of f_0 and $\phi(1020)$ in $1.5 \leq p_T \leq 8 \text{ GeV/}c$
 - $\rightarrow \rho_{\rm T}$ dependence of f_0/ ϕ reproduced by HERWIG, larger by ~2x

Centrality-dependent suppression of f₀(980)

Significant anomalous centrality-dependent suppression observed at $p_T < 4$ GeV/c \rightarrow rescattering

No Cronin peak in the intermediate p_T region, as for π and K (PLB 760 (2016) 720-735) \rightarrow **di-quark** structure of f₀(980)

p-Pb

Reminder - Rescattering in the hadronic phase

- Centrality-dependent suppression of resonant-to-ground-state particle ratio
- Suppression at low p_T compared to models with no rescattering, enhanced in more central collisions
- + indication for a short but finite hadronic phase in high multiplicity pp/p-Pb collisions

Bong-Hwi Lim, Nov. 6th

Pb-Pb

Particle ratios probe hadron interaction effects

Significant centrality-dependent suppression of f_0/π observed at $p_T < 3$ GeV/c Similar behaviour as for K*/K, with comparable lifetime (~4.5 fm) \rightarrow rescattering

 f_0/K^* ratio < 1 in full p_T range \rightarrow different strangeness content

Yield ratios depend on strangeness content

Comparison to γ_s - CSM predictions favours no hidden strangeness scenario Vovchencko et al., PRC 100, 054906 (2019)

 $|S| = 0 \rightarrow f_0/\pi$ data differ by 1.9 σ $|S| = 2 \rightarrow f_0/\pi$ data differ by 4.0 σ predictions converge in the high-multiplicity limit pp

Yield ratios depend on strangeness content

Comparison to γ_s - CSM predictions favours no hidden strangeness scenario Vovchencko et al., PRC 100, 054906 (2019)

$$\begin{split} |S| &= 0 \rightarrow f_0 / \pi \text{ data differ by } 1.9\sigma \\ |S| &= 2 \rightarrow f_0 / \pi \text{ data differ by } 4.0\sigma \\ \text{predictions converge in the high-multiplicity limit} \end{split}$$

$$\begin{split} |S| &= 0 \rightarrow f_1 / h \text{ data differ by } \sim 1 \sigma \\ |S| &= 2 \rightarrow f_1 / h \text{ data differ by } \sim 2 \sigma \end{split}$$

Yield ratios depend on strangeness content

Comparison to γ_s - CSM predictions favours no hidden strangeness scenario Vovchencko et al., PRC 100, 054906 (2019)

If f_0 contains strangeness, |S|=2 (as $\phi = s\overline{s}$), a mild increase due to strangeness enhancement is expected with multiplicity

- f_0/π double-ratio decreases with multiplicity
- f_0/π and f_0/K^* multiplicity dependence closer to |S|=0 (K*= ds) predictions

p-Pt

The hunt for glueballs

Glueball: particle composed of bound gluons only Lattice QCD: PRL101, 112003 (2008)

Expected properties:

- J^{PC} = 0^{++,} 0^{-+,} 2⁺⁺
- Mass range: 1~2 GeV/c²
- All candidates decay into ππ, KK, ηη

Candidates for scalar glueball: $f_0(1370), f_0(1500), f_0(1710)$

- Observed
- Different structure and hidden flavour content assignments according to different models

	$M_{\rm PDG}({\rm GeV/c^2})$	$M_{BESIII}(GeV/c^2)$	$\Gamma_{\rm PDG}({\rm GeV}/c^2)$	$\Gamma_{\text{BESSIII}}(\text{GeV}/c^2)$
f ₀ (1370)	1.2 to 1.5	1.350±0.009	0.2 to 0,3	0.231±0.021
f ₀ (1500)	1.506±0.006	1.505±0.000	0.112±0.009	0.109±0.000
f ₀ (1710)	1.704±0.012	1.765±0.002	0.123±0.018	0.146±0.003

Morningstar, Peardon, PRD 60, 034509 (1999)

Signal extraction: $K_S^0 K_S^0$ and KK mass spectrum

Many resonances below 2 GeV/ c^2 : $J^{CP} = 0^{++}$: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ $J^{CP} = 2^{++}$: $f_2(1270)$, $f_2(1525)$

- V0 reconstruction of K_S^0 ($c\tau = 2.68$ cm)
- K ID with TPC and TOF
- invariant mass analysis
- Breit-Wigner fit of known states

Signal extraction: K⁰_SK⁰_S mass spectrum

Several signal peaks, including $f_0(1370)$, $f_2(1270)$, $f_2(1525)$, and $f_0(1710)$, are visible after background subtraction

- V0 reconstruction of K_S^0 ($c\tau = 2.68$ cm)
- K ID with TPC and TOF
- invariant mass analysis
- Breit-Wigner fit of known states

Signal extraction: K⁰_SK⁰_S mass spectrum

Several signal peaks, including $f_0(1370)$, $f_2(1270)$, $f_2(1525)$, and $f_0(1710)$, are visible after background subtraction

- V0 reconstruction of K_S^0 ($c\tau = 2.68$ cm)
- K ID with TPC and TOF
- invariant mass analysis
- Breit-Wigner fit of known states

Summary and outlook

f₀(980)

- Centrality-dependent suppression in p-Pb at low $p_T \rightarrow$ hadron rescattering
- Particle ratios and absence of Cronin peak → conventional meson with no hidden strange quarks

$f_1(1285)$ production in pp collisions

- First measurement in ALICE
- Particle ratios compared to CSM \rightarrow no strange content

Search for glueballs in the KK mass spectrum

Promising first signals of *f*₀(1370), *f*₀(1500), *f*₀(1710)
 → measure nuclear modification to test glueball hypothesis (enhancement expected due to large gluon density)

Measurements in pp provide essential reference and input to models. Heavy-ion physics provides observables to investigate the internal structure and debated nature of exotic states.

Thank you!

Baryon/meson ratios

ALICE review, arXiv:2211.04384

f_0(980)/ π in pp compared to ρ (770)/ π^{\pm} , ω/π^0 , η/π^0

ALICE PID capabilities

Resonance/WPCF, 08.11.2023