

Quarkonium production in pp and Heavy Ion Collisions

J. Aichelin

J. Zhao, D. Arrebato Villar, P.B. Gossiaux, K. Werner (Subatech, Nantes)

T. Song, E. Bratkovskaya (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt)

work in progress

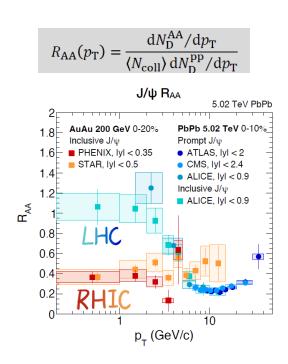
pp: PRC 96,014907 2305.10750

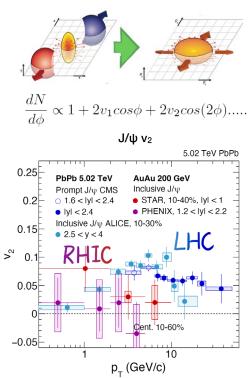
AA: first results for: PRC107,054913 WPCF 2023 Resonance Workshop Catania, November 6-10, 2023

Why do we study J/ψ production in heavy-ion collisions?

J/ψ mesons

- are a hard probe: test quark-gluon plasma from creation to hadronization
- no consistent microscopical theory available yet
- show quite different results for key observables at RHIC and LHC which are not fully understood yet:



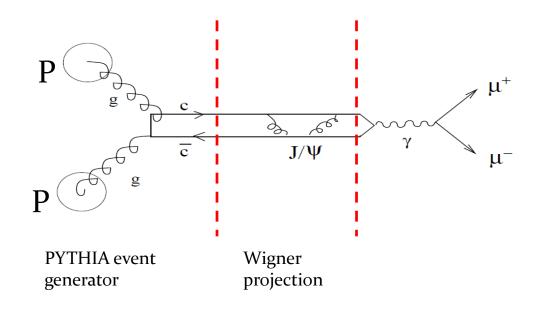


J/ψ production in p+p collisions

How to describe a bound state like a c-cbar in QCD?

It involves low momenta and needs non perturbative input → assumptions.

Our approach: Wigner density formalism (as successful at lower energies)



Wigner Density Formalism

c-cbar interaction depends on relative p and r only, \rightarrow plane wave of CM Starting point: Wave function (w.f.) of the relative motion of state i: $|\Phi_i\rangle$

$$|\Phi_i><\Phi_i|$$

Wigner density of
$$|\Phi_i>$$
: $\Phi_i^W(\mathbf{r},\mathbf{p})=\int d^3y e^{i\mathbf{p}\cdot\mathbf{y}}<\mathbf{r}-\frac{1}{2}\mathbf{y}|\Phi_i><\Phi_i|\mathbf{r}+\frac{1}{2}\mathbf{y}>.$ (close to classical phase space density)
$$\mathbf{R}=\frac{\mathbf{r}_1+\mathbf{r}_2}{2},\quad \mathbf{r}=\mathbf{r}_1-\mathbf{r}_2,\\ \mathbf{P}=\mathbf{p}_1+\mathbf{p}_2,\quad \mathbf{p}=\frac{\mathbf{p}_1-\mathbf{p}_2}{2}.$$

$$n_i(\mathbf{R},\mathbf{P}) = \sum_{\text{all c\bar{c} pairs}} \int \frac{d^3r d^3p}{((2\pi)^3} \Phi^W_i(\mathbf{r},\mathbf{p}) \prod_{\text{all other particles}} \int \frac{d^3r_j d^3p_j}{(2\pi)^{3(N-2)}} \rho^W_N(\mathbf{r_1},\mathbf{p_1}....\mathbf{r_N},\mathbf{p_N})$$

$$\frac{dn_i}{d^3P} = \int \frac{d^3R}{(2\pi)^3} n_i(\mathbf{R}, \mathbf{P})$$

The results are obtained using a relativ. formulation

pp: In momentum space given by tuned PYTHIA In coordinate space $\sim r^2 \exp\left(-\frac{r^2}{2\delta^2}\right)$ $\delta^2 = \langle r^2 \rangle/3 = 4/(3m_c^2)$

Wigner Density Formalism

The Wigner density of the state $|\Phi_i>$ is different for S and P states. Simplest possible (harmonic oscillator) parametrization:

$$\Phi_S^W(\mathbf{r},\mathbf{p}) = 8 \frac{D}{d_1 d_2} exp \big[-\frac{r^2}{\sigma^2} - \sigma^2 p^2 \big] \qquad \Phi_P^W(\mathbf{r},\mathbf{p}) = \frac{16}{3} \frac{D}{d_1 d_2} (\frac{r^2}{\sigma^2} - \frac{3}{2} + \sigma^2 p^2) exp \big[-\frac{r^2}{\sigma^2} - \sigma^2 p^2 \big]$$

Where σ reproduces the rms radius of the vacuum c cbar state

D: degeneracy of Φ d₁: degeneracy of c

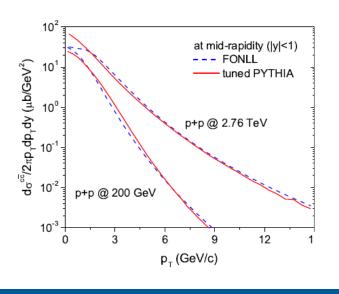
d₂: degeneracy of cbar

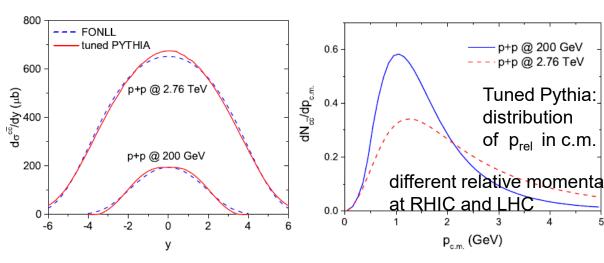
p+p @ 200 GeV

p+p @ 2.76 TeV

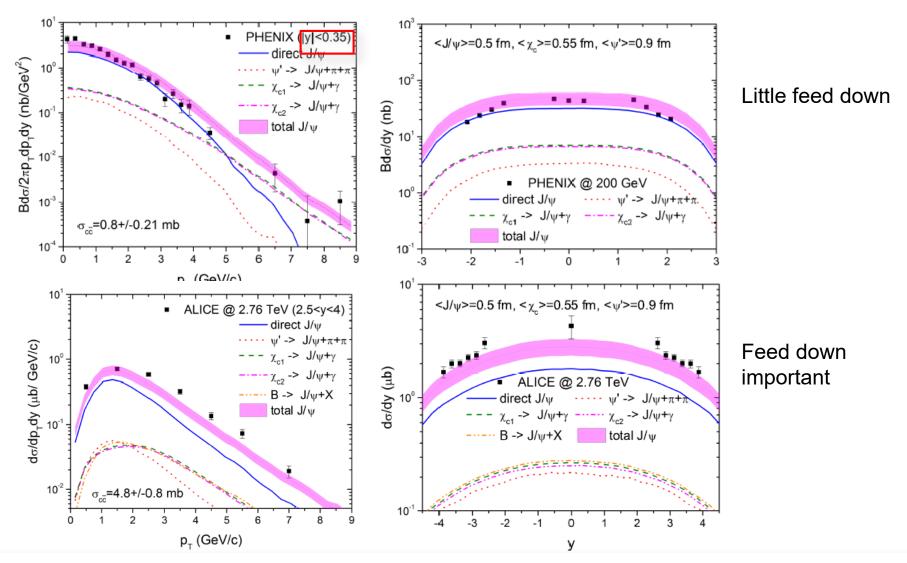
 $\sigma \sim \text{radius of } \Phi$

The tuned PYTHIA reproduces FONLL charm quark calculations but J/ multiplicity depends in addition on the ccbar correlation (not known in FONLL)





pp: comparison with PHENIX and ALICE data

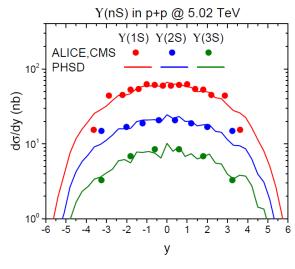


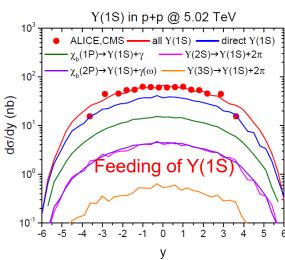
Wigner density based model reproduced pp J/Ψ data

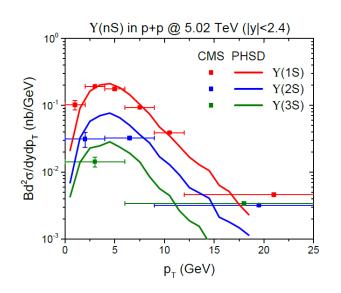
pp: comparison of Y(nS) with CMS/ALICE data

Wigner density approach works also for Y(nS)

2305.10750 [nucl-th]



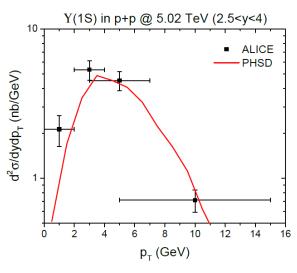




$$\Phi_{\mathbf{S}}^{W}(\mathbf{r}, \mathbf{p}) = 8 \frac{D}{d_1 d_2} \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right],$$

$$\Phi_{\mathbf{P}}^{W}(\mathbf{r}, \mathbf{p}) = \frac{16}{3} \frac{D}{d_1 d_2} \left(\frac{r^2}{\sigma^2} - \frac{3}{2} + \sigma^2 p^2\right)$$

$$\times \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right],$$



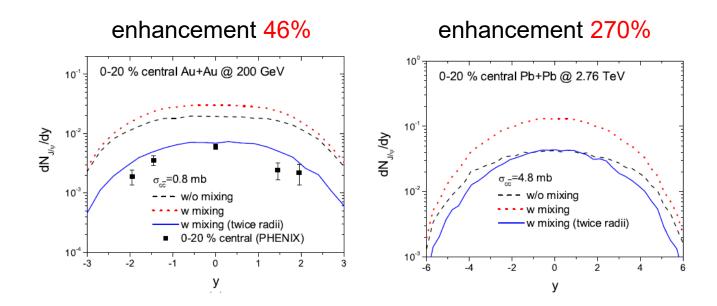
$$\sigma^2 = 2/3\langle r^2 \rangle$$
 for S-state $\sigma^2 = 2/5\langle r^2 \rangle$ for P-state

With this validation of the new approach for quarkonium production in pp we are ready for AA collisions

AA collisions

Primary production of J/Ψ in AA

Without the formation of a QGP we expect a (large) enhancement of the J/ψ production because c and cbar from different NN vertices can form a J/ψ.



but experiments show suppression

Reason: J/ψ production in HI collisions is a very complex process

The different processes which influence the J/ψ yield

- Creation of heavy quarks (shadowing)
- J/ψ are first unstable in the quark gluon plasma and are created later
- c and cbar interact with the QGP
- c and cbar interact among themselves (← lattice QCD)
- If QGP arrives at the dissociation temperature T_{diss}, stable J/ψ are possible
- J/ψ creation ends when the QGP hadronizes
- J/ψ can be further suppressed or created by hadronic interaction (task for the future → Torres-Rincon)
- There are in addition J/ψ from the corona (do not pass the QGP)

Our model follows the time evolution of all c and cbar quarks,

is based, as our pp calculation, on the Wigner density formalism assumes that

all c and cbar interact with QGP as those observed finally as D-mesons all c and cbar interact among themselves

uses EPOS2 to describe the expanding QGP

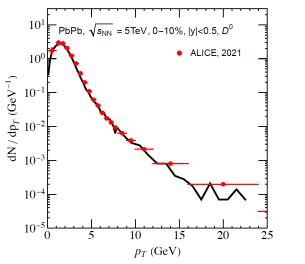
HQ interactions with QGP verified by D meson results

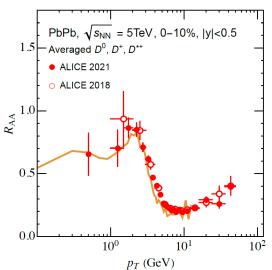
D mesons test the energy loss and $\rm v_2$ of heavy quarks in a QGP energy loss tests the initial phase

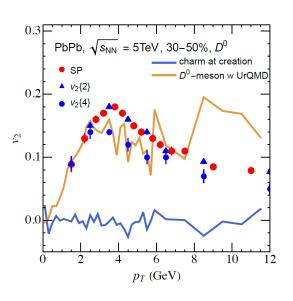
v₂ the late stage of the expansion

Two mechanisms : collisional energy loss: PRC78 (2008) 014904

radiative energy loss: PRD89 (2014) 074018







EPOS4HQ reproduces dN/dp_T , R_{AA} and v_2 quite well

→ Heavy quark dynamics in QGP medium under control

J/ψ dynamics in heavy ion collisions

Starting point: von Neumann equation for the density matrix of all particles

$$\partial \rho_N/\partial t = -i[H,\rho_N]$$
 with $H=\Sigma_i K_i + \Sigma_{i>j} V_{ij}$ $P^{\Phi}(t)=\mathrm{Tr}[\rho^{\Phi}\rho_N(t)]$ with $\rho^{\Phi}=|\Psi^{\Phi}><\Psi_{\Phi}|$ gives the multiplicity of Φ at time t

This is the solution if we would know the quantal $\rho_N(t)$

 $\rho_N(t)$ is unknown so we follow BUU,QMD ...

$$\rho_N = \langle W_N^{c(classical)} \rangle$$

and replace $P^{\Phi}(t)$ by the integration over the rate:

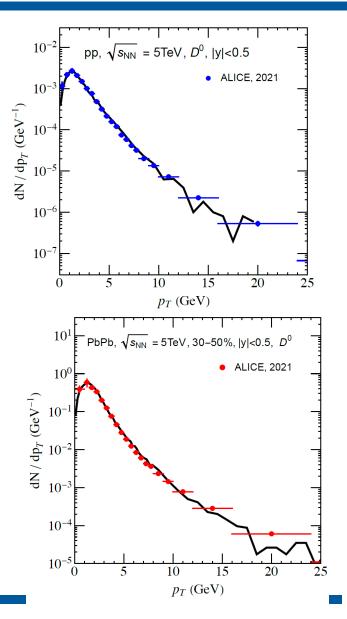
$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}}{dt} = \frac{d}{dt} \text{Tr}[\rho^{\Phi}\rho_N(t)] \qquad P^{\Phi}(T) = \int_0^T \Gamma^{\Phi}(t)dt$$

We assume that heavy quarks and QGP partons interact by collisions only:

$$\Gamma^{\Phi} = Tr(\rho^{\Phi} d\rho^{N}(t)/dt) = -iTr(\rho^{\Phi}[H, \rho^{N}(t)]) = -iTr(\rho^{\Phi}[U_{12}, \rho^{N}])$$

$$U_{12} = \sum_{j \leq 3} (V_{1j} + V_{2j})$$

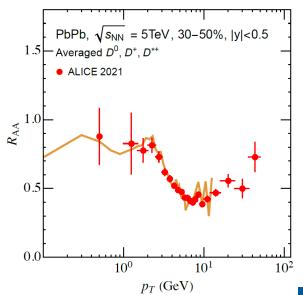
Open heavy flavor results in pp and AA from EPOS4

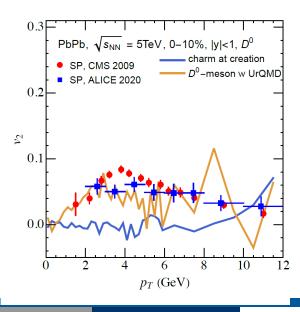


Elastic and enelastic energy loss of Q in medium Beyond the scope of the talk

(PRC 78 (2008) 014904, PRD 89 (2014) 074018)

Energy loss is controlled by comparing open heavy flavour results with experiment.





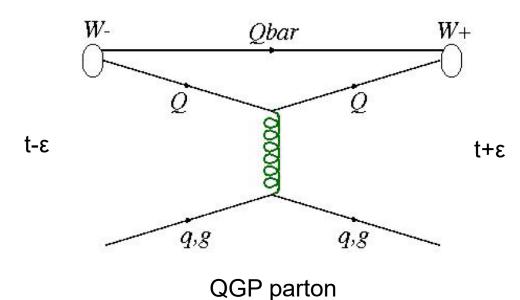
J/ψ creation in heavy ion collisions

 $\Gamma^{\Phi}(t)$ expressed in Wigner and classical phase space density:

$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}(t)}{dt} = \frac{d}{dt}Tr[\rho^{\Phi}, \rho_{N}(t)] \approx \frac{d}{dt}\prod \frac{d^{3}r_{i}d^{3}p_{i}}{(2\pi)^{3N}}W^{\Phi}(\mathbf{r}, \mathbf{p})W^{c}(\mathbf{r_{1}}, \mathbf{p_{1}}, ...\mathbf{r_{N}}, \mathbf{p_{N}})$$

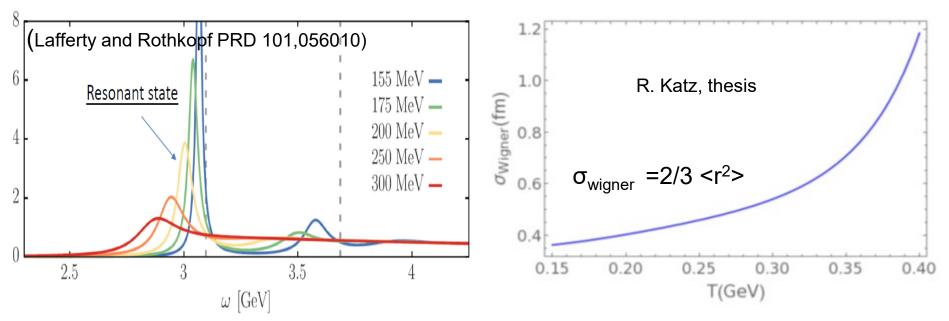
If the collisions are point like in time and if $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ is time independent (1,2 are charm quark, n=number of collision of i and j, $t_{ij}(n)$ =time of n-th collision of ij)

$$\Gamma^{\Phi}(t) = \sum_{n} \sum_{i=1,2} \sum_{j \geq 3} \delta(t - t_{ij}(n)) \prod_{N} \frac{d^3 r_i d^3 p_i}{(2\pi)^{3N}} W^{\Phi}(\mathbf{r}, \mathbf{p}) [\underbrace{W^c(\mathbf{r_1}, \mathbf{p_1}, ... \mathbf{r_N}, \mathbf{p_N}, t + \epsilon)}_{W^+} - \underbrace{W^c(\mathbf{r_1}, \mathbf{p_1}, ... \mathbf{r_N}, \mathbf{p_N}, t - \epsilon)}_{W^-}]$$



J/ψ creation in heavy ion collisions

Lattice calc: $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ depends on the temperature and hence on time



This creates an additional rate, called local rate

$$\Gamma_{loc} = (2\pi\hbar)^3 \int d^3r d^3p \ W_{Q\bar{Q}}(\mathbf{r}, \mathbf{p}, t) \dot{W}_{\Phi}(\mathbf{r}, \mathbf{p}, T(t)).$$

Final multiplicity of J/ in heavy-ion coll with a dissociation temperature

$$P(t) = P^{prim}(t_{init}) + \int_{t_{init}}^{t} [\Gamma_{coll}(t') + \Gamma_{loc}(t')]dt' \quad \rightarrow \quad P(t \rightarrow \infty) \quad \text{= asympt. multiplicity}$$

Interaction of c and cbar in the QGP

V(r) = attractive potential between c and cbar (PRD101,056010)

We work with

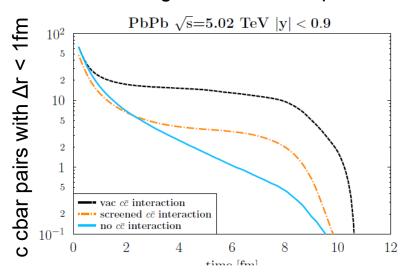
$$\mathcal{L} = -\gamma^{-1}mc^2 - V(r) \qquad H = \sqrt{m^2 + p_r^2 + \frac{p_\theta^2}{r^2}} + V(r)$$

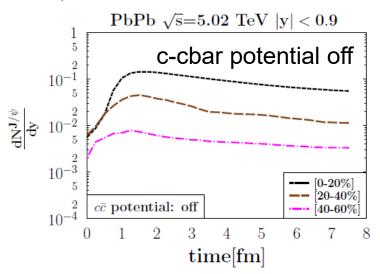
$$p^2 = p_r^2 + p_\theta^2/r^2$$

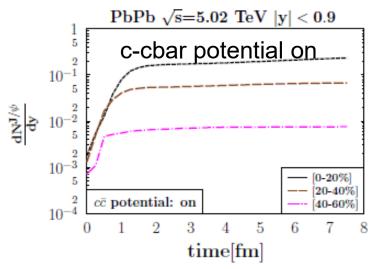
$$\gamma^{-1} = \sqrt{1 - v^2/c^2}$$

Has to be improved to describe high $p_T J/\Box$

Position and momentum of each c-cbar pair evolve according to Hamiltons equations







c-cbar potential keeps the quarks together → increases multiplicity

Influence of the Corona

EPOS 2 show two classes of particles of initially produced particles:

- Core particles which become part of QGP
- Corona particles from the surface of the interaction zone (energy density too low, no collision after production → like pp) importent for high pt and for v2

Confirmed by centrality dependence of multiplicity

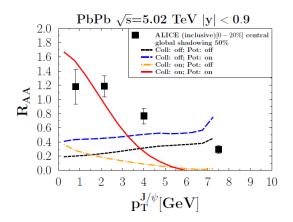
For J/ψ mesons we use as working description:

Corona J/ ψ are those where none of its constituents suffers from a momentum change of q > q_{thres} . Larger q would destroy a J/ ψ .

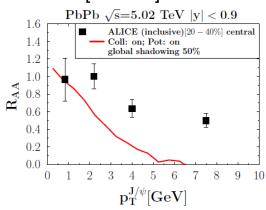
Comparison with ALICE data

Caution: excited states decay, b decay and hadronic rescattering not in yet

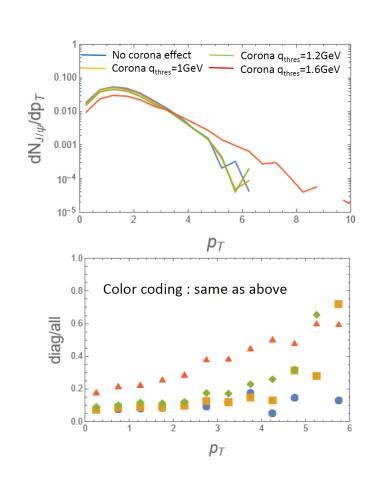
[0-20%] no corona



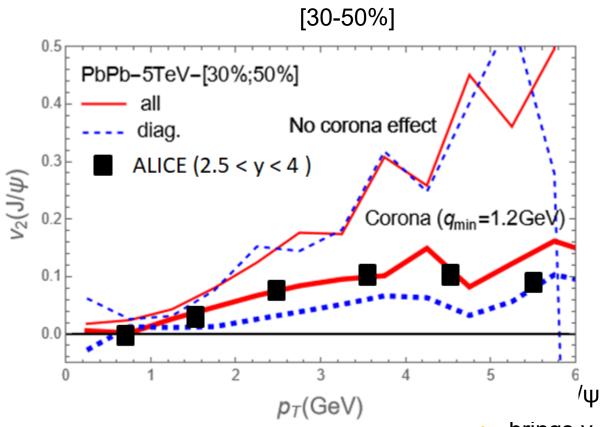
[20-40%] no corona



influence of the corona



Comparison with ALICE data



caution: comparison of mid and forward rapidities

- brings v₂ closer to the experimental values
- create difference between diagonal and off-diagonal

Summary

We presented a new approach for quarkonia production in pp collision based on the Wigner density matrix It describes the y and p_T dependence of the spectra for J/Ψ , χ and Y from RHIC to LHC

Based on these results we presented a new microscopic quantal approach for J/□ production in AA which follows each c and cbar from creation until detection as J/ψ

based on $\partial \rho_N/\partial t = -i[H, \rho_N]$ (no rate equation, no Fokker Planck eq., no thermal assumptions)

- c and cbar are created in initial hard collisions (controlled by pp data)
- when entering the QGP J/ψ become unstable
- c and cbar interact by potential interaction (lattice potential)
 c and cbar interact by collisions with q,g from QGP
- when T < T_{diss} = 400 MeV J/ ψ can be formed (and later destroyed)
- formation described by Wigner density formalism (as in pp)

- \triangleright Including corona J/ \square , preliminary results agree reasonably with ALICE data for R_{AA} as well as for v₂.
- > The later production (over) compensates the expected multiplicity increase (with respect to pp) due to c and cbar from different vertices
- We observe an enhancement of $R_{AA}(J/\Psi)$ at low p_T at LHC, as seen experimentally

Outlook

a lot remains to be done:

- Follow the color structure, excited states
- Relativistic kinematics,
- J/ψ interaction in the hadronic expansion reduced cross section of preformed J/ψ (r < λ_{gluon}) with QGP partons (dipole cross section)

- ...

Our approach and open quantum systems

Von Neuman eq.

$$\partial \rho_N / \partial t = -\frac{i}{\hbar} [H, \rho_N]$$
 $H = H_{1,2} + H_{N-2} + U_{1,2}$ $U_{1,2} = \Sigma_j V_{1,j} + \Sigma_j V_{2,j}$

Prob. to find quarkonium

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)]$$

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_{N}(t)]$$
 with $[\rho^{\Phi}, H_{1,2}] = 0$ $[\rho^{\Phi}, H_{N-2}] = 0$

Quarkonium rate:

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = \frac{-i}{\hbar} Tr[\rho^{\Phi}[U_{1,2}, \rho_N(t)]]$$

$$\partial \rho_N(t)/\partial t = -\frac{i}{\hbar} \Sigma_j[K_j, \rho_N(t)] - \frac{i}{\hbar} \Sigma_{k>j}[V_{jk}, \rho_N(t)].$$

Interaction: coll. heavy quarks – partons:
$$-\frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t - t_{jk}(n)) \rangle$$
$$(W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t + \epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t - \epsilon)) \rangle .$$

yields

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = h^3 \frac{d}{dt} \int \prod_j^N d^3r_j d^3p_j W_{12}^{\Phi} W_N^c(t) = h^3 \int \prod_j^N d^3\mathbf{r}_j d^3\mathbf{p}_j \ W_{12}^{\Phi} \frac{\partial}{\partial t} W_N^c(t)$$

Lindblad eq. (open quantum systems) in the quantal Brownian motion regime

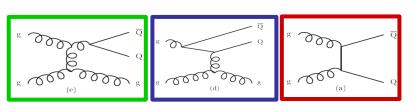
$$\frac{d}{dt}\rho(t) = -i\left[\frac{p^2}{M} + \Delta H, \rho\right] + \sum_n \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k})\rho C_n^{\dagger}(\vec{k}) - \frac{1}{2}\left\{C_n^{\dagger}(\vec{k})C_n(\vec{k}), \rho\right\}\right]$$

Miura, Akamatsu, 2205.15551

Azimuthal correlations in EPOS4 and PHSD

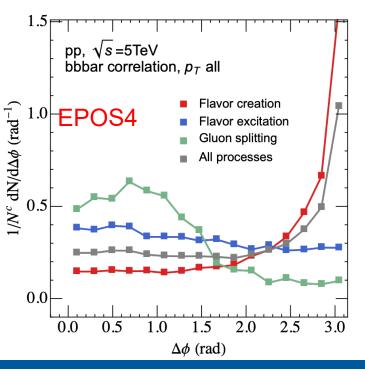
FONLL: only single quark p_T spectrum for J/□ or Y we need

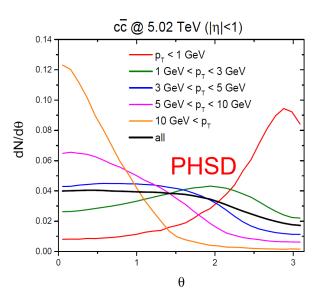
c cbar and b bbar correlations

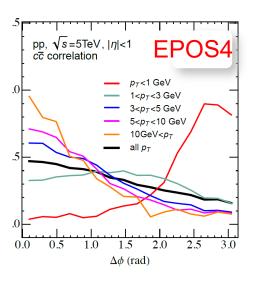


azimuthal correlations of EPOS4 and PHSD between c and cbar agree even as a function of p_T

basis for a model independent production of quarkonia







Our approach and open quantum systems

Von Neuman eq.

$$\partial \rho_N / \partial t = -\frac{i}{\hbar} [H, \rho_N]$$
 $H = H_{1,2} + H_{N-2} + U_{1,2}$ $U_{1,2} = \Sigma_j V_{1,j} + \Sigma_j V_{2,j}$

Prob. to find quarkonium

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)]$$

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)]$$
 with $[\rho^{\Phi}, H_{1,2}] = 0$ $[\rho^{\Phi}, H_{N-2}] = 0$

Quarkonium rate:

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = \frac{-i}{\hbar} Tr[\rho^{\Phi}[U_{1,2}, \rho_N(t)]]$$

$$\partial \rho_N(t)/\partial t = -\frac{i}{\hbar} \Sigma_j [K_j, \rho_N(t)] - \frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)].$$

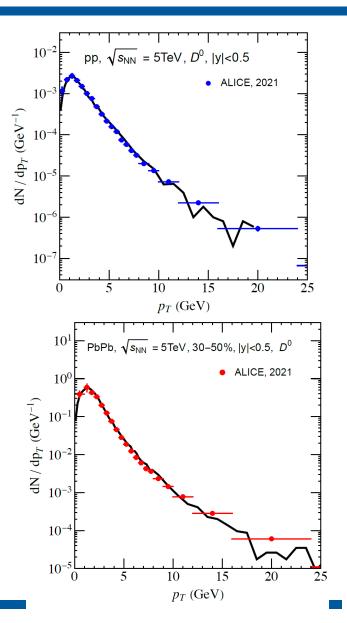
$$-\frac{i}{\hbar} \sum_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t - t_{jk}(n)) \rangle$$

$$(W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t + \epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t - \epsilon)))$$

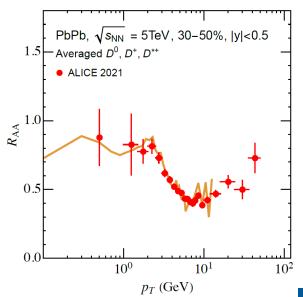
Interaction: coll. heavy quarks – partons:
$$-\frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t-t_{jk}(n)) \rangle$$
 yields
$$\frac{dP^\Phi(t)}{dt} = \Gamma^\Phi(t) = h^3 \frac{d}{dt} \int \prod_j^N d^3 r_j d^3 p_j W_{12}^\Phi W_N^c(t) = h^3 \int \prod_i^N d^3 \mathbf{r}_j d^3 \mathbf{p}_j \ W_{12}^\Phi \frac{\partial}{\partial t} W_N^c(t)$$
 Lindblad eq. (open quantum systems) in the quantal Brownian motion regime
$$\frac{d}{dt} \rho(t) = -i \left[\frac{p^2}{M} + \Delta H, \rho \right] + \sum_n \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k}) \rho C_n^\dagger(\vec{k}) - \frac{1}{2} \left\{ C_n^\dagger(\vec{k}) C_n(\vec{k}), \rho \right\} \right]$$

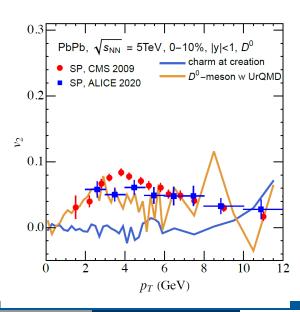
$$\frac{d}{dt}\rho(t) = -i\left[\frac{p^2}{M} + \Delta H, \rho\right] + \sum_{n} \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k})\rho C_n^{\dagger}(\vec{k}) - \frac{1}{2}\left\{C_n^{\dagger}(\vec{k})C_n(\vec{k}), \rho\right\}\right]$$

Miura, Akamatsu, 2205.15551

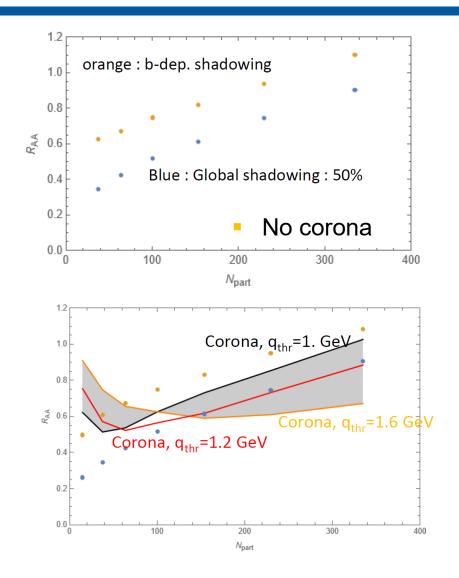


First EPOS4HQ results





Comparison with ALICE data



Corona J/ψ bring

- R_{AA} close to one for peripheral reactions
- the participant dependence close to data

