Experimental highlights on collectivity in small collision systems

Alberto Calivà University of Salerno and INFN

Istituto Nazionale di Fisica Nucleare **SEZIONE DI NAPOLI** Gruppo Collegato di Salerno

Introduction

Long-range correlations in AA collisions typically attributed to the collective expansion of a strongly-interacting medium

Remarkable similarities observed in high-multiplicity pp and

Radial flow

Effect of radial flow in AA collisions: hardening of p_T spectra and shift of the maximum \rightarrow observed also in pp collisions with increasing multiplicity

Elliptic flow: hydro

Initial geometrical asymmetry of non-central collisions results in azimuthal asymmetry of particle emission:

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} = \frac{\mathrm{N}}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n)) \right]$$

The second harmonic is the **elliptic flow**

$$v_2 = <\cos(2(\phi - \Psi_2)) >$$

connected to initial state eccentricity

$$\epsilon = <\frac{x^2 - y^2}{x^2 + y^2} >$$

Stronger pressure gradient along symmetry plane

Triangular flow: hydro

Initial geometrical asymmetry of non-central collisions results in azimuthal asymmetry of particle emission:

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} = \frac{\mathrm{N}}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n)) \right]$$

Third harmonic is the **triangular flow**

$$v_3 = < \cos(3(\phi - \Psi_3)) >$$

connected to fluctuations of the initial distributions of participant nucleons

Role of initial conditions

IP-Glasma initial configurations of energy density in small systems Ilow directions (arrows) after hydrodynamic evolution of the IP-Glasma initial conditions \rightarrow Characteristic elliptic and triangular flow patterns are visible

Mass ordering of v₂

Phys. Rev. C 102 (2020) 055203

Mass ordering of v₂ for different hadron species (including nuclei) in Pb-Pb collisions > qualitatively consistent with the assumption of a common flow velocity field

 $p \approx$

$$m \cdot \langle \beta \rangle$$

Mass ordering of v₃

Effects of initial-state fluctuations of nucleons visible also for light nuclei Mass ordering of v_3 as expected from relativistic hydro

Phys. Rev. C 102 (2020) 055203

Forward measurements of vn

First measurements of charged-hadron v_n at forward rapidity by LHCb

- Similar magnitude and p_T shape of v_n measured at mid-rapidity
- Rising v_2 at high p_T in 75-84% centrality may be due to non-flow contributions
- v_3 becomes negative at high p_T

Forward region dominated by hadronic phase \rightarrow weaker flow

Correlations at forward rapidity

Stronger flow at forward rapidity in peripheral PbPb collisions wrt p-Pb collisions

v₂ in p-Pb and Pb-Pb collisions

CMS, Phys. Lett. B 724 (2013) 213-240

Very similar p_T-dependence of v₂ in Pb-Pb and p-Pb in the same multiplicity intervals
v₂ in p-Pb smaller by ~ 30% wrt v₂ in Pb-Pb

Hydro (+ fluctuating initial conditions) consistent with the data at low p_T

V₃ in p-Pb and Pb-Pb collisions

CMS, Phys. Lett. B 724 (2013) 213-240

The v₃ component reaches the same maximum value for the two systems \rightarrow probing similar initial conditions?

v₂ in ultra-peripheral collisions

Phys. Rev. C 104, 014903 (2021) ATLASTemplate FitPb+Pb, 1.0 µb⁻¹ - 1.7 nb⁻¹ $2.0 < |\Delta\eta| < 5.0$ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0nXn $\frac{1}{4} p+Pb$, $N_{ch}^{rec} \ge 60$ $\sum_{\gamma} \Delta \eta > 2.5$ pp, $N_{ch}^{rec} \ge 60$ $20 < N_{ch}^{rec} \le 60$ 4 rec0.15 Photonuclear CGC calc. ☆ 0. ☆ ¢ 0.05 3 2

*p*_{_}[GeV]

Ultra-peripheral collisions: photo-nuclear reactions

 \rightarrow high-multiplicity events selected for analysis

Non-zero v₂ observed (lower than pp and p-Pb collisions)

- Can be explained using CGC predictions
- Caveat: v₂ coefficients vulnerable to (residual) non-flow

Mass ordering in small systems

ALI-PREL-543472

v₂ of identified hadrons in small systems

- Mass ordering at low p_T
- Baryon/meson grouping at intermediate p_T

Consistent with hydrodynamical calculations

Correlation between v₂ and <p_T>

Correlation between v_2 and $<p_T>$ to disentangle role of initial geometrical anisotropy and radial flow

 $< p_T >$ rises when going from peripheral to central collisions while v₂ decreases \rightarrow anti-correlated in a geometrical model

Tested against state-of-the-art hydro model with and without initial momentum anisotropy

Predictions far from measurements at low multiplicity \rightarrow breakdown of hydro picture in small systems?

Role of spectators

 v_2 measured by STAR vs. $\sqrt{s_{NN}}$ during the BES:

switchover between out-of-plane and in-plane flow observed at around 3.2 GeV

- Spectators affect particle emission at low energy
- Regime of progressively more intense in-plane flow from collective expansion at high energy

nergy ane Jy

v_n in small systems at RHIC

Phys. Rev. Lett. 130, 242301 (2023)

v_{2,3} measured in small systems at RHIC at 200 GeV

SONIC model:

- initial eccentricity from Glauber
- no sub-nucleonic fluctuations

IP-Glasma + MUSIC + UrQMD model

- includes sub-nucleonic fluctuations
- initial momentum correlations
- viscous hydrodynamic evolution in the final state
- UrQMD model for evolution in the hadronic phase \bigcirc

Hydro models do not provide a simultaneous description of v₂ and v₃

NQ Scaling

 \bigcirc

breaks down at 3.2 GeV: hadronic vs. partonic regime and role of spectators

Ridge structure in e⁺e⁻?

Elementary collisions:

- No multi-parton interactions
- absence of initial state correlations \bigcirc
- \rightarrow No ridge structure observed in min. bias e⁺e⁻ collisions

Ridge structure in e⁺e⁻?

- No multi-parton interactions
- absence of initial state correlations \bigcirc
- \rightarrow No ridge structure observed in min. bias e⁺e⁻ collisions

 $N_{trk} \ge 50$ **Thrust Axis**

Elementary collisions:

No conclusive statement on HM e⁺e⁻ collisions

Collectivity inside jets?

• Good agreement with models up to $N_{ch} \sim 80$ • Interesting deviation for $N_{ch} > 80$

Summary

 v_n and $\Delta\eta\Delta\phi$ correlation measurements show remarkable similarities in small and large systems

- v₂ shows a hierarchy with system size
- v₃ rather independent

Competing theoretical approaches: hydrodynamical (collective) expansion vs. initial momentum correlations in small systems

Summary

 v_n and $\Delta\eta\Delta\phi$ correlation measurements show remarkable similarities in small and large systems

- v₂ shows a hierarchy with system size
- v₃ rather independent

Competing theoretical approaches: hydrodynamical (collective) expansion vs. initial momentum correlations in small systems

More (high-precision) measurements are on their way

Thank you for your attention

