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GOALS:
— Review theory
— Compare coalescence and Koonin Eq.
— Understand roles of Femtoscopic and Coalescence
— Wish list
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Femtoscopy Theory

SOURCE

phase space cloud
⃗vcm

⃗r

GOAL: Measure  to infer 
For identical bosons: 
Strong/Coulomb makes inversion more complicated

C( ⃗p1, ⃗p2) S( ⃗vcm, ⃗r)
|ϕ |2 = 1 + cos(2 ⃗q ⋅ ⃗r)

wave function

source function

“SOURCE FUNCTION” measures phase space cloud, not source!!!

<latexit sha1_base64="BjTukSXFdcER/OaJUOw7Ga8uLeg="></latexit>

C(~p1, ~p2) =
P (~p1, ~p2)

P (~p1)P (~p2)
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=
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d3rS(~vcm,~r) |�~q(~r)|2 ,
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d3r1d3r2 fcm(~vcm,~r1, t)fcm(~vcm,~r2, t)�(~r1 � ~r2 � ~r)
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Coalescence vs Koonin Eq.
Both use same source function:

SOURCE

⃗vcm

phase space cloud

⃗r

“Smoothness” approximation: 
Sometimes  

 sometimes related to Wigner transform 
of wave function, 
sometimes from , 
sometimes just some finite width distribution 
for statistics…

⃗vcm → ⃗vcm ± δ ⃗v
δ ⃗v

⃗pa − ⃗pb

 is probability two particles of same 
are separated by 

⃗Sab( ⃗vcm, ⃗r) ⃗v
⃗r

will visit later



Coalescence vs Koonin Eq.
Both use same source function:

source function

wave function

source function

wave function

Coalescence

Femtoscopy



Wave Function and Density of States

r

V(r)

Phase shifts:
a) describe wave function outside range of 
b) give density of states

V



Wave Function and Density of States

describes contribution to density of states at |ϕq(r) |2 r

If  is localized (compared to ), Koonin formula becomes  Δ |ϕq(r) |2 S(r)

dn( free)
states

dE
∼

1
volume



describes contribution to density of states at |ϕq(r) |2 r

If  is localized (compared to ), Koonin formula becomes  Δ |ϕq(r) |2 S(r)

dn( free)
states

dE
∼

1
volume

If  is localized, coalescence formula becomes|ϕc(r) |2

Same as thermal model (aside from binding energy)

Femtoscopy:

Coalescence:

Wave function and density of states



 BUT!!!  wave function is not always localized

Deuteron r.ms. radius  fm

At small , extends 

≈ 3

q Δ |ϕq(r) |2 ≈ 1/q

Therefore:
a) Koonin/Coalescence formula necessary unless sources are large
b) Thermal model (which ignores extent of w.f.) is questionable for small sources
     Example:  bound (by Coulomb) states extend  fmπ+π− ≈ 200

Wave function and density of states



Do you need a “good” wave function? 
Femtoscopy:
Outside range of potential, 
Overall strength of integrated w.f. is 
Thus

all potentials give same answer if they have same  and 
unless range of potential is large (e.g. pd)

ϕq(r) = sin(qr + δ)
(1/π)dδ/dq

δ dδ/dq

Coalescence:
Outside range of potential, 
Thus

all potentials give same answer if they have same binding energy B and A. 
unless range of potential is large

ϕc(r) = Ae− 2μBr



When are the approximations good?

Not out of controlApproximations are uncontrolled



The Four Approximations
The Truth:

Sum over all “remainder” states f′￼

APPROXIMATIONS
1)  does not depend on 
     a) fails if phase space density is high (identical particles)

     multi-particle symmetrization is important
     otherwise, must calculate for all momenta, then integrate over all other particles
 b) fails if interaction with other particles lasts long time
     at sufficiently small relative momentum, this is fine
     Coulomb with other particles slowest other interaction

ϕ(xa, xb; pa, pb) f′￼



The Four Approximations
After first approximation:

APPROXIMATIONS
2) Emission ( matrix) is independent.
    Sum over  and matrices must factorize

Ignores other correlations (energy/momentum/charge) conservation…
good at small relative momentum (other sources have longer characteristic scales)

    

T−
f′￼ T−



After approximations 1 & 2:
     Define:

3) Smoothness approximation:
   a) Ignore  dependence in  and ,
   b) replace  with  or 

 — good when emissions are thermal and matrices are broad
 — questionable if relative momentum is small
 — necessary if you don’t know off-shell behavior of  
 — for coalescence you can add  factor

q̃ sa(P̄a + q̃, xa) sb(P̄b − q̃, xb)
sa(P̄a + q̃, xa)sb(P̄b + q̃, xb) sa(pa, xb)sb(pb, xb) sa(Ea, ⃗pa,cmsb(Eb, ⃗pb,cm)

s(p, x)
eB/T

this gives

The Four Approximations
S.P. PRC 1997



4) Non-simultaneous emission
    — no problem for pure HBT
    — should be fine for small relative momentum

Last approximation: non-simultaneous wave functions

 in pair frameϕq(x1 − x2) = ϕ(Δt = 0, ⃗x1 − ⃗x2)

The Four Approximations



Sometimes interactions involve change of degrees of freedom:
No interaction through potential

Rearrangement Interactions

Examples:
K+K− ↔ ϕ
αd ↔6 Li

Wavefunction paradigm questionable — but thermal equilibrium still applies 



When are the approximations good?
Femtoscopy:
— Emission uncorrelated aside from FSI
— Relative motion is small, 
— Phase space density not high
    (as long as phase space densities )
— Range of interaction smaller than source size
— Rearrangement interactions, e.g. 
     where wave function paradigm is questionable

q/μ ≲ 0.1

≲ 0.5

K+K− ↔ ϕ

Coalescence:
— Same as above
— Wave function should not have high  components (low )
— Should correct for binding energy: 

p B
eB/T

Thermal:
— Must be at freeze out!!
— Whenever wave function extent is source size
— OK with rearrangement interactions

< <

Central H.I. Collisions: 
— Usually very solid 

pp Collisions: 
— Be more careful 

Rearrangment interactions 
— Be careful
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Complementary Roles
FROM FEMTOSCOPY:

  + plus radial form information
all as function of 

FROM COALESCENCE:
 or 

all as function of 
deuteron spectra provides nothing additional beyond this

Rinv, Rout, Rside, Rlong
y, pt, ϕ

Rinv Sab(r ≈ 0)
y, pt, ϕ

For Gaussian:

evaluated at same ⃗v
Because you take third root — this is very accurate!

Llope et al., PRC 1995
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Figure 6. Representative examples referring to a generic EOS (red solid line), a sub-conformal EOS (blue solid line), and monotonic sound
speed inside neutron stars (green solid line). The left plot shows the sound speed as function of the energy density, with the kinks in the curves
marking the matching points of the various segment used to construct the EOSs. The middle panel shows the corresponding EOSs, together
with the BPS EOS (Baym et al. 1971) (cyan solid line) that we use at low densities. The blue and green bands are the uncertainties from nuclear
theory (Hebeler et al. 2013) and perturbative QCD (Fraga et al. 2014), respectively. Shown in gray is the outer envelope of all constraint-
satisfying EOSs. The right panel reports the corresponding mass-radius curves, together with the outer envelope and various observational
constraints.
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Figure 7. The same as Fig. 1 in the main text, but with the overlay of the sound-speed curves relative to 1000 different EOSs.
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Figure 8. PDFs of the sound speed obtained for different values of the number of segments. More specifically, the first three panels from the
left refer to N = 3, 4, 5, respectively. They clearly show that the steep increase of the distribution beyond c2s ' 1/3 at small energy densities is
a robust result that is independent of the number of segments and filtering. The right-most panel refers instead to a PDF for N = 5 in which the
filtering on the energy-density gradient is applied. Note how the filtering does modify the behaviour of the PDF at very large energy densities
removing the most extreme EOSs.

for the sound speeds can lead to rather extreme EOSs, that is, EOSs having rapidly changing material properties, especially close

ρ0

3ρ0

S.Altiparmak,C.Ecker,L.Rezzola, Ast.J.Lett. (2022)

D.Oliinychenko,A.Sorensen,
V.Koch,L.McLerran
nucl-th 2208.11996
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FIG. 11. Scatter plot of the pressure as a function of baryon
density, obtained for 50,000 EOSs with K0, c2[2,3]n0

, and

c2[3,4]n0
sampled from the posterior distribution.

of Fig. 12, the c2s in symmetric nuclear matter, calculated
using the central values of the MAP parameters (that is
for K0 = 300 MeV, c2[2,3]n0

= 0.47, c2[3,4]n0
= �0.08,

and setting c2[4,1]n0
= 0.3), is shown with the black solid

line. With yellow long-dashed, green dash-dotted, and
short-dashed blue lines we show the corresponding re-
sults for pure neutron matter, using the three values of
the slope parameter of the symmetry energy L. It is evi-
dent that a smaller (bigger) L results in a smaller (bigger)
c2s in pure neutron matter. Note that for c2s given by the
ASYM1 and ASYM2 curves, the transformation to pure
neutron matter results in a disappearance of the first-
order phase transition. In the bottom panel, we show c2s
for exactly symmetric nuclear matter at three values of
c2[3,4]n0

= {0.06,�0.08,�0.22} (thick black long-dashed,

medium solid, and thin short-dashed line, respectively),
corresponding to the central MAP value and boundary
values within 1 sigma. For the pure neutron matter, we
show two curves of c2s, obtained using a high value of L
for SYM1 (ASYM1, thick long-dashed yellow line) and
a low value of L for SYM3 (ASYM3, thin short-dashed
blue line). The spread between the ASYM1 and ASYM3
curves illustrates the uncertainty in the speed of sound in
pure neutron matter at nB 2 [3, 4]n0 given both the un-
certainty in our results and the uncertainty in the value
of the slope parameter L. We note here that this spread
might be even larger given the large values of the sym-
metry energy slope parameter reported by the PREXII
experiment, L = 106 ± 37 MeV [49]. We also point out
that recently, an extensive study was performed in which
the influence of the symmetry energy expansion parame-
ters on the conversion between neutron matter EOS and
symmetric matter EOS was studied in detail [50].

FIG. 12. Top panel: The speed of sound c2s calculated for
the central values of the MAP parameters for both exactly
symmetric nuclear matter (solid black line) and pure neutron
matter, the latter obtained using three values of the slope pa-
rameter of the symmetry energy L (yellow long-dashed, green
dash-dotted, and blue short-dashed lines); a smaller (bigger)
L results in a smaller (bigger) c2s in pure neutron matter.
Note that for c2s given by the ASYM1 and ASYM2 curves,
the transformation to pure neutron matter results in a dis-
appearance of the first-order phase transition. Bottom panel:
The speed of sound c2s for exactly symmetric nuclear mat-
ter at three values of c2[3,4]n0

= {0.06,�0.08,�0.22} (thick
black long-dashed, medium solid, and thin short-dashed line,
respectively), corresponding to the central MAP value and
values at ±1�, and c2s in pure neutron matter obtained us-
ing a high value of L for SYM1 (ASYM1, thick yellow long-
dashed line) and a low value of L for SYM3 (ASYM3, thin
short-dashed blue line). The spread between the ASYM1 and
ASYM3 curves illustrates the uncertainty in c2s in pure neu-
tron matter at nB 2 [3, 4]n0 given both the uncertainty in our
results and the uncertainty in the value of L.

Given all of the above, we see that in general a lack of
a first-order phase transition in pure neutron matter does
not exclude a first-order phase transition in exactly sym-
metric nuclear matter, and in particular we conclude that
while there is some tension between our results and the
neutron star data, the discrepancy is not significant. At

Focus on measurements related to bulk properties
Hyper-stiff EoS for   ????
QCD Phase transition????

2ρ0 < ρB < 4ρ0

Bayesian analyses 
Mass-Radius of n-stars 

H.I. Flow
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 femtoscopyπ − π
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FIG. 4. (Color online) The collision energy dependence of the
RO/RS (top panel) and theR2

O−R2
S (bottom panel) extracted

from freeze-out π−π− without and with various EoS in central
Au+Au collisions compared with the experimental data taken
from Refs. [32–34, 64–67].

(bottom panel) calculated with various EoS with a broad
range of experimental data. One observes that by con-
sidering the CMF EoS, the ratio RO/RS and the square
difference R2

O − R2
S are pulled down in comparison to

the cascade mode, and the present data can be qualita-
tively reproduced. In this energy range the CMF EoS
gives very similar results to the hard Skyrme EoS which
also includes a strong repulsion leading to earlier pion
emission. Generally the effects of the equation of state
decrease with increasing collision energy.

Let us now turn to the EoS with a phase transi-
tion. Here we compare two CMF EoS, both including
a phase transition are adopted. The CMF PT2 EoS in-
cludes a phase transition at low baryon densities, while
the CMF PT3 EoS includes a phase transition at higher
baryon densities (cf. Fig. 1). At the lowest energy
(
√
sNN = 2.4 GeV), the results calculated with all CMF

EoS are similar as the EoS agree up to 2.5 saturation
density. As the collision energy increases, the calculated

results of CMF PT2 EoS gradually increase compared
to the standard CMF (or Hard/CMF PT3) EoS as ex-
pected for the appearance of a phase transition, inter-
estingly and are similar to those with the cascade mode
at

√
sNN = 3.3 GeV (Elab = 4 GeV/nucleon). This is

understood since the pure cascade mode can be consid-
ered a super soft EoS and therefore behaves similarly to
a phase transition. In addition, the results from simula-
tions with the Hard EoS, CMF EoS and CMF PT3 EoS
are close to each other in the whole energy region un-
der investigation. In conjunction with Fig. 1, the above
phenomenon can be well understood. The baryon den-
sity of 0-10% central Au+Au collisions at

√
sNN = 2.4

GeV is less than 3ρ0, and the density reaches about 5ρ0
for 0-10% central Au+Au collisions at

√
sNN = 7.7 GeV

(Elab = 29.7 GeV/nucleon). Thus, the HBT radii calcu-
lated with CMF PT2 are a result of the phase transition
encountered for most collision energies while the transi-
tion in PT3 is never really reached, even for the highest
collision energy. Thus using CMF PT3 shows no signal
of the phase transition in the explored energy regime.
Our results indicate that the pion HBT radii parameters
RO/RS and R2

O − R2
S are very sensitive to the EoS up

to densities of 4-5 times saturation density only and are
consistent with the absence of any strong softening due
to a phase transition up to that point.

C. Discussions

To better understand the results with the different EoS
let us discuss the freeze-out times and coordinates in the
following section.
Fig. 5 shows the freeze-out time distribution of the

π− emission in central Au+Au collisions in the inspected
energy region. The results from the different equations
of state are represented by various coloured lines, respec-
tively. It can be clearly seen that pions are mainly frozen-
out in the time interval 5-25 fm/c, and that the pions are
frozen-out earlier in case of a harder EoS. In addition, at√
sNN = 2.4 GeV, the distributions of the results from

all simulations with potentials are almost identical, and
different from the distribution using cascade mode, sim-
ply because the EoS for such low densities is very similar
for all density dependent potentials used. As the energy
increases, the distributions from simulations with hard,
CMF and CMF PT3 EoS remain the same, while the
distribution from simulations calculated with CMF PT2
EoS gradually approach that of the soft cascade calcu-
lations. At

√
sNN = 7.7 GeV, owing to the CMF and

CMF PT3 EoS being softer than the hard Skyrme po-
tential and stiffer than the CMF PT2 EoS, the distribu-
tions from simulations with CMF and CMF PT3 EoS lie
between the distributions of simulations with hard EoS
and CMF PT2 EoS.
The mean values of the π− freeze-out time [panel (a)]

and the transverse radii [panel (b)] are plotted in Fig. 6
shown as different coloured lines with symbols. It can be

P.Li,J.Steinheimer,A.Kittiratpattana,M.Bleicher & Q.Li
Sci.China, Phys.Mech.Astron. (2023)Scott’s Wish List



Scott’s Wish List
neutron-neutron correlations

25A MeV and 58A MeV
Expand 
— full 6-dimensional
— lower energy: No boost invariance
— imaging
— relation to EoS

Coordinated analysis with d coalescence
— full 3-dimensional

Neutron-neutron femtoscopy
— no Coulomb
— shape

Non-identical femtoscopy
— relation fo EoS

π − π, K − K, p − p


