Measurement of azimuthal anisotropy of $f_0(980)$ and D^0 in heavy ion collisions at CMS

Nihar Ranjan Saha

Indian Institute of Technology, Madras (On behalf of CMS Collaboration, CERN)

Catania (Italy), November 6-10, 2023

- Introduction: Exotic hadrons and azimuthal anisotropy
- Production of $f_0(980)$ and D^0
- Azimuthal anisotropy of $f_0(980)$ and D^0
- NCQ scaling of $f_0(980)$
- Results
- Summary

Motivation: Exotic hadrons

Example of exotic hadron: tetra-quark

- **Exotic hadrons:** configurations other than the usual $q\bar{q}$ and $qqq(\bar{q}\bar{q}\bar{q}\bar{q})$
- * $f_0(980)$: candidate of exotic hadron first observed in $\pi\pi$ scattering experiments in the 1970's.

S.D. Protopopescu, Phys. Rev. D 7 (1973) 1279 B. Hyams, Nucl. Phys. B 64(1973) 134

* The configuration of $f_0(980)$ is still controversial: $s\bar{s}$ meson, $s\bar{s}q\bar{q}$ tetraquark, $q\bar{q}g$ hybrid, or $K\bar{K}$ molecule.

D.V. Bugg, Phys. Rept. 397 (2004) 257E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007) 1J.R. Pelaez, Phys. Rept. 658 (2016) 1

$$E_T = \sqrt{p_T^2 + m_0^2} - m_0$$

- Azimuthal anisotropy: $\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos \left[n \left(\phi \psi \right) \right]$
- ★ Approximate number of constituent quark (NCQ) scaling $v_n(p_T)/n_q = v_{n,q}(p_T/n_q)$ $v_n(E_T)/n_q = v_{n,q}(E_T/n_q)$
- Coalescence hadronization provides one possible mechanism: n_q quarks combine into a hadron with ~ equal momenta.

$$\frac{dN_h}{d\phi} \propto \left(\frac{dN_q}{d\phi}\right)^{n_q} \propto \left[1 + 2v_{2,q}(p_T, q)\cos(2[\phi - \psi_{RP}])\right]^{n_q} \\ \propto 1 + n_q \cdot 2v_{2,q}(p_T, q)\cos(2[\phi - \psi_{RP}])$$

• v_2 measurement of $f_0(980) \rightarrow n_q$

Reconstruction of $f_0(980)$

- Peak is modeled with Breit-Wigner function.
- Residual background: 3rd order polynomial.
- Fitting range: $0.8 < m_{\pi\pi} < 1.7 \text{ GeV}/c2$

• Dataset: pPb collisions at $\sqrt{S_{NN}} = 8.16$ TeV in high multiplicity events collected in 2016

- Dominant decay channel: $f_0(980) \rightarrow \pi^+\pi^-$
- No PID in this analysis; All charged tracks assumed to be pions.
- Mass Spectrum: opposite sign pair $\pi + \pi$ subtracted by same sign pair $\pi + \pi +, \pi - \pi -$

CMS-PAS-HIN-20-002

• Yield of $f_0(980)$ extracted for different $\phi - \psi_2$ ranges.

Event-plane resolution is corrected.

n_q extraction for $f_0(980)$

- NCQ scaling fit in E_{T}/n_{q} $\frac{E_{T}}{n_{q}}(p_{0}+p_{1}\frac{E_{T}}{n_{q}})e^{-p_{2}\frac{E_{T}}{n_{q}}}$
- Qualitatively consistent with $n_q = 2$ for $f_0(980)$
- Qualitatively inconsistent with $n_q = 4$ for $f_0(980)$

CMS-PAS-HIN-20-002

Conclusion: $f_0(980)$

- $v_2 \text{ of } f_0(980)$ measured as a function of p_T up to 10 GeV/c
- Assuming NCQ scaling, n_q of $f_0(980)$ is consistent with 2
- $n_q = 4$ (tetra-quark state or $K\bar{K}$ molecule) excluded with 7.7 σ
- $n_q = 3 \ (q\bar{q}g \text{ hybrid}) \text{ excluded with}$ 3.5 σ
- CMS data favor $q\bar{q}$ normal meson state for $f_0(980)$.

CMS-PAS-HIN-20-002

Motivation: D⁰ **study**

PbPb 5.02 TeV (0.58 nb⁻¹)

Why D⁰ mesons?

- ~40% of all prompt charm hadrons are D⁰ meson (Prompt D⁰)
- ~70% of all b hadrons decay to D⁰ mesons (Non Prompt D⁰)
- Best avenue for charm quark properties.

Reconstruction

- CMS PbPb $\sqrt{S_{NN}} = 5.02$ TeV data
- Inclusive D^0 reconstruction.
- No particle identification: All opposite charge track pairs combinations.
- Boosted Decision Tree for background rejection.

CMS

Introduction: D⁰ **anisotropy**

- * Anisotropy coefficient, v_n $v_n = < 2cos \ n(\phi - \psi_n) >$
 - $\phi
 ightarrow {
 m D}^0$ azimuthal angle
 - $\psi_n \rightarrow$ Symmetry plane

We can probe:

- > Diffusion
- Path dependent parton energy loss
- > Hadronization

Results: D⁰ anisotropy

arXiv:2212.01636 submitted to PLB

First measurement of $b \rightarrow D^0$ anisotropy in PbPb collisions

- Mass ordering of flow magnitudes.
- Weak p_T and centrality dependence.
- Indication of nonzero v_3

- ✤ Method: Scalar Product
- DCA is used to estimate non-prompt fraction

Results: Model comparison

High pT CUJET3 CPC 43 4 (2019) 044101 LBT PRC 94 (2016) 014909

Low pT PHSD: PRC 92 (2015) 014910 TAMU PLB 735 (2014) 445 LGR EPJ C 80 7 (2020) 671

- Qualitatively good agreement between theory and data
- No model can describe whole p_T range

arXiv:2212.01636 submitted to PLB

Summary

- v_2 of $f_0(980)$ measured as a function of p_T up to 10 * GeV/c
- CMS pPb data favor 2 quark state (normal meson) for * $f_0(980)$ over 4 quark state.
- Strong p_T and centrality dependence of azimuthal * anisotropy of Prompt D⁰ mesons.
- First measurement of $b \rightarrow D^0$ azimuthal anisotropy in PbPb * collisions at CMS.
- CMS PbPb data indicates non-zero Elliptic flow (v_2) as well * as triangular flow (v_3) of Non-prompt D⁰ mesons.

CMS-PAS-HIN-20-002

Thank you!

WPCF 2023 (6th - 10th Nov 2023)

BACKUP

NCQ scaling v_2

Systematic uncertainties of $f_0(980) v_2$:

- Mix-Event Correction
- Track Selection
- Event-plane Resolution
- Signal Form
- Residual Background Form
- Fit Range
- Non-flow Subtraction

Systematic uncertainties of $D^0 v_2$:

- Signal PDF variation
- Background PDF variation
- BDT variation
- Track quality selections
- Efficiency x Acceptance

Event Plane: $\psi_n = \frac{1}{n}atan2\left(\sum_i w_i sin(n\phi_i), \sum_i w_i cos(n\phi_i)\right)$, i^{th} -tower of forward hadron calorimeter (HF) (3 < |\eta| < 5); ϕ_i azimuthal angle, w_i transverse energy in each tower as weight

Event Plane Recentering and Flattening

Recentering:

 $\psi_n = \frac{1}{n}atan2\left(\sum_i w_i sin(n\phi_i) - \left\langle\sum_i w_i sin(n\phi_i)\right\rangle, \sum_i w_i cos(n\phi_i) - \left\langle\sum_i w_i sin(n\phi_i)\right\rangle\right), \\ <> \text{ indicates the average over all events in the same centrality class and vertex locations}$

• Flattening:

$$\psi_n = \psi'_n \left(1 + \sum_{j=1}^{j_{max}} \frac{2}{j_n} \left(-\left\langle \sin(j_n \psi'_n) \right\rangle \cos(j_n \psi'_n) + \left\langle \cos(j_n \psi'_n) \right\rangle \sin(j_n \psi'_n) \right) \right)$$

HF calorimeter in the Pb-going direction for better resolution ($3 < \eta < 5$ for pPb beam, $-5 < \eta < -3$ for Pbp beam)

ATUTE OF TECHA

$\mathbf{b} \rightarrow \mathbf{D}^0 v_n$ extraction

