

CORRELATIONS BETWEEN ANISOTROPY FLOW AND MEAN TRANSVERSE MOMENTUM USING SUBEVENT CUMULANTS IN SMALL SYSTEMS AT CMS

Rohit Kumar Singh (IIT Madras) for the CMS Collaboration

Nov 8, 2023

WPCF 2023 - XVI Workshop on Particle Correlations and Femtoscopy & IV Resonance Workshop 2023

Introduction

In heavy ion collisions:

• Anisotropic flow in the final state arises from the hydrodynamic response to the initial geometric anisotropy

- Mean $p_T([p_T])$ reflects the strength of radial flow push, which is related to the initial energy density of the fireball
- The correlations between v_n and $[p_T]$ probe the fluctuations present in the initial density profile $\rho(v_n^2, [p_T]) = \frac{\operatorname{cov}(v_n^2, [p_T])}{\sqrt{\operatorname{var}(v_n^2)}\sqrt{\operatorname{var}([p_T])}}$

Introduction

In heavy ion collisions:

• Anisotropic flow in the final state arises from the hydrodynamic response to the initial geometric anisotropy

- Mean $p_T([p_T])$ reflects the strength of radial flow push, which is related to the initial energy density of the fireball
- The correlations between v_n and $[p_T]$ probe the fluctuations present in the

initial density profile

$$\rho(v_n^2, [p_{\mathrm{T}}]) = \frac{\operatorname{cov}(v_n^2, [p_{\mathrm{T}}])}{\sqrt{\operatorname{var}(v_n^2)}\sqrt{\operatorname{var}([p_{\mathrm{T}}])}}$$

Introduction

In heavy ion collisions:

• Anisotropic flow in the final state arises from the hydrodynamic response to the initial geometric anisotropy

- Mean $p_T([p_T])$ reflects the strength of radial flow push, which is related to the initial energy density of the fireball
- The correlations between v_n and $[p_T]$ probe the fluctuations present in the

Rohit k

Rohit Kumar Singh

Motivations for small systems (1)

- $\hat{\rho}$ exihibit a sign change with increasing multiplicity when an initial momentum anisotropy is present
- Carries information about the origin of the observed momentum anisotropy
- Sensitive to the transverse size of the initial fireball

Motivations for small systems (2)

- However, the correlations from PYTHIA alone have a sign change
- Nonflow has to be carefully dealt
- The goal of this analysis:
 - Introduce a new variable to remove more nonflow
 - Search for sign change at the lowest possible multiplicity in pp/pPb/ PbPb collisions

Analysis Method (1)

$$\rho(v_2^2, [p_T]) = \frac{\operatorname{cov}(v_2^2, [p_T])}{\sqrt{\operatorname{Var}(v_2^2)_{dyn}}\sqrt{\operatorname{Var}([p_T])_{dyn}}} (1)$$

$$\stackrel{A}{\xrightarrow{-0.75}} \stackrel{[p_T]}{\xrightarrow{(-0.5, 0.5)}} \stackrel{B}{\xrightarrow{0.75}} \stackrel{2.4}{\xrightarrow{0.75}} \stackrel{2.7}{\xrightarrow{0.75}} \stackrel{2.7}{\xrightarrow$$

Analysis Method (1)

$$\rho(v_{2}^{2}, [p_{T}]) = \frac{\operatorname{cov}(v_{2}^{2}, [p_{T}])}{\sqrt{\operatorname{Var}(v_{2}^{2})_{dyn}}\sqrt{\operatorname{Var}([p_{T}])_{dyn}}} (1)$$

$$A = \frac{10}{0.75} \left[\frac{p_{T}}{0.5, 0.5} \right] = \frac{10}{0.75} =$$

Subevents A and B are used for calculation of $c_2\{2\}$; $|\eta| < 0.5$ for $[p_T]$

Covariance between
$$c_2\{2\}$$
 and $[p_T]$:
 $\operatorname{cov}(c_2\{2\}, [p_T]) = \mathfrak{Re}\left\langle \sum_{a,b} \exp^{2i(\phi_a - \phi_b)} \left([p_T] - \langle [p_T] \rangle \right) \right\rangle$ (2)
Dynamic variance of $c_2\{2\}$:

$$\operatorname{Var}(c_2\{2\})_{\operatorname{dyn}} = \langle \langle 4 \rangle \rangle - \langle \langle 2 \rangle \rangle^2 \tag{3}$$

Variance of $[p_T]$ from dynamic $[p_T]$ fluctuation c_k :

$$c_k = \left\langle \left[(p_{\mathrm{T}i} - \langle [p_{\mathrm{T}}] \rangle) (p_{\mathrm{T}j} - \langle [p_{\mathrm{T}}] \rangle) \right] \right\rangle \tag{4}$$

Analysis Method (2)

$$\rho(v_{2}^{2}, [p_{T}]) = \frac{\operatorname{cov}(v_{2}^{2}, [p_{T}])}{\sqrt{\operatorname{Var}(v_{2}^{2})_{dyn}}\sqrt{\operatorname{Var}([p_{T}])_{dyn}}}$$
(1)
Extend and study the new variable to remove more nonflow

$$\rho(c_{2}\{2\}, [p_{T}]) \longrightarrow \rho(c_{2}\{4\}, [p_{T}])$$
Three subevents
-2.4 -1.3 -0.75 (-0.5, 0.5) 0.75 - 1.3 C 2.4

 $c_2{4}$ is analyzed with three subevent method $c_2{4}_{3-\text{sub}} = \langle 4 \rangle_{a,a|b,c} - 2\langle 2 \rangle_{a|b} \langle 2 \rangle_{a|c}$

Phys. Rev. C 96, 034906 (2017)

Observables in this analysis

- This analysis focuses on small systems
- It is the first paper to :
 - use multiparticle correlations for flow when correlating with $[p_T]$
 - \bullet explore the correlator with different η gaps to study nonflow effects
 - measure $v_3 [p_T]$ correlations in small systems
 - include measurements in pp collisions

Results are presented as a function of N_{ch}, which is defined in $0.5 < p_T < 5.0$ GeV, $|\eta| < 2.4$, and corrected for tracking efficiency

CMS-PAS-HIN-21-012 (link)

Results for covariance

- Clear sign change for pp collisions with $c_2{2}$
- No sign change at low N_{ch} using multiparticle correlations with current statistics
- The sign of the normalized correlator is determined by the covariance

Results for covariance

- Clear sign change for pp and pPb collisions with $c_2{2}$
- No sign change at low N_{ch} using multiparticle correlations with current statistics
- The sign of the normalized correlator is determined by the covariance

Results for covariance

- Clear sign change for pp and pPb collisions with $c_2{2}$
- No sign change at low N_{ch} using multiparticle correlations with current statistics
- The sign of the normalized correlator is determined by the covariance

• Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pp collisions

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pp collisions
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pp collisions
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$
- Also true for PYTHIA8 events

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pPb -> agree with IP-Glasma+hydro
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pPb -> agree with IP-Glasma+hydro
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$
- \bullet After removing nonflow with larger η gap, no evidence of CGC in data

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pPb -> agree with IP-Glasma+hydro
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$
- \bullet After removing nonflow with larger η gap, no evidence of CGC in data

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pPb -> agree with IP-Glasma+hydro
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$
- \bullet After removing nonflow with larger η gap, no evidence of CGC in data
- Data better described by the smaller initial fireball $R_{RMS}=0.9$ fm in hydro

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pPb -> agree with IP-Glasma+hydro
- However, no sign change is observed when using $|\eta|{>}1.0$ for $c_2\{2\}$
- \bullet After removing nonflow with larger η gap, no evidence of CGC in data
- Data better described by the smaller initial fireball $R_{RMS}=0.9$ fm in hydro

Summary

• The correlations between $[p_T]$ and cumulants from both two- and fourparticle correlations in small systems are presented

- Apparent sign change is observed for $\rho(c_2\{2\}, [p_T])$ in pp and pPb
- However, no sign change is observed with larger η gap in $c_2\{2\}$
 - ATLAS default is $|\eta| > 0.75$, with $|\Delta \eta| > 1.5$
 - ALICE default is $|\eta| > 0.4$, with $|\Delta \eta| > 0.8$
 - CMS is studying both $|\eta| > 0.75$ ($|\Delta \eta| > 1.5$) and $|\eta| > 1.0$ ($|\Delta \eta| > 2.0$)
- After removing more nonflow with both two- and four-particle correlation cumulants, there is no evidence of CGC in data
- These high-precision data and the observables employing multiparticle correlations should provide new insight into the origin of azimuthal anisotropy in small collision systems

Backup

Keeping cov(c_2 {4}, [p_T]) but drop $\rho(c_2$ {4}, [p_T]) in this analysis

- The reason is we are not 100% sure if the variance $Var(c_2\{4\})_{dyn}$ in our new method is truly dynamic
- It may contain statistical fluctuations in our current method
- The measurement of v_n fluctuation in small systems is a task our community has not accomplished. The event-by-event v_n studies all stopped at 60-70% centrality in AA collisions

Table 1: Average multiplicity of reconstructed tracks per N_{ch}^{rec} bin for N_{ch} and $N_{trk}^{offline}$ in pp, pPb, and PbPb collisions. Uncertainties for the tracking efficiency corrected N_{ch} are included.

	рр		pPb		PbPb	
$N_{\rm ch}^{\rm rec}$ range	$\langle N_{\rm ch} \rangle$	$\left< N_{ m trk}^{ m offline} \right>$	$\langle N_{ m ch} angle$	$\left< N_{ m trk}^{ m offline} \right>$	$\langle N_{ m ch} angle$	$\langle N_{ m trk}^{ m offline} angle$
[0,20)	$8{\pm}0.3$	9	$11{\pm}0.4$	12	$16 {\pm} 0.6$	14
[20, 40)	$34{\pm}1$	34	36 ± 1	36	57 ± 2	48
[40, 60)	58 ± 2	56	60 ± 2	60	96±4	80
[60, 80]	82±3	78	83 ± 3	82	135 ± 5	112
[80,100)	$106 {\pm} 4$	101	$107 {\pm} 4$	105	175 ± 7	144
[100, 150)	132 ± 5	125	$140{\pm}6$	137	$240{\pm}10$	197
[150, 200)			198 ± 8	191	$335{\pm}13$	276
[200, 250]			$256{\pm}10$	246	$434{\pm}17$	353
[250, 300)					535 ± 21	426

Phys. Lett. B 718 (2013) 795

- The mapping table between N_{ch} and $N_{trk}^{\ offline}$

Existing measurements

