

VILLUM FONDEN 🚿 VELUX FONDEN

Mingrui Zhao for the ALICE Collaboration

China Institute of Atomic Energy

Niels Bohr Institute

WPCF 2023, 07 Nov 2023

COLLECTIVITY IN SMALL SYSTEMS

 Double ridge structure, a sign of collectivity in heavy-ion collisions, also observed in pp and p–Pb collisions

• The puzzle:

- Is there any fundamental difference between the flow-like signals in large and small systems
- To answer the question, one need to know:
 - The role of initial stages (initial geometry and initial coupling)
 - The role of final stage effects

• The known thing:

- Geometry and fluctuations are important in small collision systems
- Hydrodynamic works well on many of the signatures

GEOMETRY AND FLUCTUATION

- Geometry plays an important role in small system.
- Geometry + hydrodynamic provides reasonable description of $p_{\rm T}$ -differntial flow in small systems geometry scan.
- Can they go further to describe the event-by-event fluctuations of the system?

R. D. Weller, P. Romatschke Phys.Lett.B 774 (2017) 351-356

GEOMETRY AND FLUCTUATION

- The magnitudes of v_n in pp are similar as in Pb–Pb at low multiplicities (flow fluctuation dominates region)
- Flow harmonics provide constraints for modeling of the initial geometry and its fluctuations, as well as the transport parameters

GEOMETRY AND FLUCTUATION

In heavy-ion collisions:

- **Shape** of the fireball:
 - $\varepsilon_2 \rightarrow v_2$
 - $\varepsilon_3 \rightarrow v_3$
 - $\boldsymbol{\varepsilon}_4, \, \boldsymbol{\varepsilon}_2 \!
 ightarrow \, \boldsymbol{v}_4$
- **Size** of the fireball:
 - radial flow, $1/R \rightarrow [p_T]$
- Measurements of the fluctuations and the correlation between the flow and transverse momentum helps to understand the eventby-event initial geometry of the matter

Methodology:

Measure the same observables in **large** and small systems and compare them to see see if they can be explained in a **coherent way**

ALICE EXPERIMENT

- Inner Tracking System (ITS)
 - Tracking, triggering and vertexing
- V0 Detector (V0A/V0C)
 - Triggering and event classification
- Forward Multiplicity Detector (FMD)
 - Unique pseudorapidity coverage
 - -3.4 < η < -1.7
 - 1.7 < η < 5.0
- Time Projection Chamber (TPC)
 - Tracking and particle identification
- Time-of-Flight detector (TOF)
 - Particle identification

Data sample: LHC Run2 sample

Collision system	Energy
pp	13 TeV
p–Pb	5.02 TeV
Pb-Pb	5.02 TeV

Mingrui Zhao (CIAE & NBI) for the ALICE collaboration, WPCF2023

,,,,,,,,,,

FLOW CORRELATIONS IN SMALL SYSTEMS

• $SC(m, n) = cov(v_m^2, v_n^2)$: correlation of event-by-event v_n

 Hint of negative SC(3,2) (2.1σ significance) and positive SC(4,2) (1.9σ significance) in pp

collisions, having the same sign as Pb–Pb collisions

- Constraints on initial geometry fluctuations
- Best non-flow control technique utilized, but still not non-flow free

Precision needed to prove or disprove the geometry correlation

FLOW AND $[p_T]$ FLUCTUATIONS

- A decreasing trend observed for c_k, inconsistent with the hydrodynamics predictions
- Constraints on initial shape fluctuations and initial size fluctuations

- A decreasing trend is observed in pp and p–Pb collisions
- IP-Glasma + MUSIC + UrQMD fails to describe the data (with and without initial momentum anisotropy (IMA))

$v_2^2 - [p_T]$ correlation in small systems

- A decreasing trend is observed in pp and p–Pb collisions
- Cannot be explained by simple geometry picture
- IP-Glasma + MUSIC + UrQMD fails to describe the data (with and without initial momentum anisotropy (IMA))

SUMMARY

Observables	Physics messages
Symmetric cumulants SC(3,2)	Correlation between ε_2 and ε_3
Symmetric cumulants SC(4,2)	Correlation of ε_2 and ε_4 Nonlinear contribution of v_4 from ε_2
$\sigma(v_2^2)$	Fluctuation of ε_2
C _k	Fluctuation of size of the matter
$cov(v_2^2, [p_T])$	Correlation between shape and size of the matter
$ ho(v_2^2,[p_{\mathrm{T}}])$	Correlation between shape and size of the matter

Constraining the geometry and geometry fluctuation of the initial stage.

Thank you for your attention

