Heavy flavour hadronization from AA to pp collisions

S. Plumari

Dipartimento di Fisica e Astronomia 'E. Majorana', Università degli Studi di Catania

INFN-LNS

Thanks to: V. Minissale, M.L. Sambataro, S. K. Das, Y. Sun, V. Greco

WPCF 2023 - XVI Workshop on Particle Correlations and Femtoscopy & IV Resonance Workshop 2023 6-10 November, Catania, Italy

Outline

Basic concepts, motivation and model setting

Heavy hadrons in AA collisions:

 \bullet Ac , D spectra and ratio: RHIC and LHC

Heavy hadrons in small systems (pp @ 5.02 TeV):

- \bullet $\Xi c/D^0$, $\Omega c/D0$

Multi-charm production PbPb vs KrKr vs ArAr vs OO:

- comparing evolution with A-A to SHM
- looking at <r> dependence of Ωccc production

Transport coefficient

Models not really tested at $p \rightarrow 0$ The new data \rightarrow determine $D_s(T)$ more properly, i.e. $p \rightarrow 0$ where it is defined and computed in IQCD

							2018-2019
	Catania	Duke	$\operatorname{Frankfurt}(\operatorname{PHSD})$	LBL	Nantes	TAMU	
Initial HQ (p)	FONLL	FONLL	pQCD	pQCD	FONLL		Several Collab. In joint activities:
Initial HQ (x)	binary coll.	binaryy coll.	binary coll.	binary coll.		binary coll.	- EMMI-RRTF:
Initial QGP	Glauber	Trento	Lund		EPOS		R. Rapp et al., Nucl. Phys. A 979 (2018)
QGP	Boltzm.	Vishnu	Boltzm.	Vishnu	EPOS	2d ideal hydro	
partons	mass	m=0	m(T)	m=0	m=0	m=0	- HQ-JEIS:
formation time QGP	$0.3~{ m fm/c}$	$0.6~{\rm fm/c}$	$0.6~{\rm fm/c}$ (early coll.)	0.6 fm/c	0.3 fm/c	0.4 fm/c	S. Cao et al.,Phys. Rev. C 99 (2019)
interactions in between	HQ-glasma	no	HQ-preformed plasma	no		no	- Y. Xu et al., Phys. Rev. C 99 (2019)

Transport coefficient

the extraction of the charm quark diffusion coefficient New joint activity needed

2018-2019 Several Collab. in joint activities:

- EMMI-RRTF:

R. Rapp et al., Nucl. Phys. A 979 (2018) - HQ-JETS:

S. Cao et al., Phys. Rev. C 99 (2019)

- Y. Xu et al., Phys. Rev. C 99 (2019)

HF Hadronization schemes

• Independent fragmentation

 $q \rightarrow \pi$, K, p, Λ .. $c \rightarrow D$, D_s , Λ_c , ...

• String fragmentation (PYTHIA)

• In medium hadronization with Cluster decay A. Beraudo et al., arXiv:2202.08732v1 [hep-ph]

• Coalescence/recombination

S. Plumari, V. Minissale et al, Eur. Phys. J. **C78** no. 4, (2018) 348 S. Cao et al. , Phys. Lett. B 807 (2020) 135561

Resonance Recombination model

L. Ravagli and R. Rapp, Phys. Lett. B 655, 126 (2007).

L. Ravagli, H. van Hees and R. Rapp, Phys. Rev. C 79, 064902 (2009).

• Statistical hadronization model (SHM)

A. Andronic et al, JHEP 07 (2021) 035

Relativistic Boltzmann eq. at finite η/s **Bulk evolution** $p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{q}]$ Equivalent to viscous hydro η/s≈0.1 $p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{g},f_{g}]$ free-streaming field interaction collision term **ε-3**p≠0 gauged to some $\eta/s\neq 0$ **HQ** evolution $p^{\mu}\partial_{\mu}f_Q(x,p) = \mathcal{C}[f_q, f_q, f_Q](x,p)$ S. Plumari et al., J. Phys. Conf. Ser. 981 012017 (2018). IQCD WB EoS m=0.5 GeV
 LHC: m=0.5 GeV 0.35 m=0 $\mathcal{C}[f_Q] = \frac{1}{2E_1} \int \frac{d^3 p_2}{2E_2(2\pi)^3} \int \frac{d^3 p'_1}{2E_{1'}(2\pi)^3}$ 3/d 0.25 $\times [f_Q(p_1')f_{q,q}(p_2') - f_Q(p_1)f_{q,q}(p_2)]$ $\times |\mathcal{M}_{(q,q)+Q}(p_1p_2 \to p_1'p_2')|^2$ 0.2 0.15 (D^0,D^+,D_s,Λ_c) $\times (2\pi)^4 \delta^4 (p_1 + p_2 - p_1' - p_2')$ 0.1 M scattering matrix by QPM model fit to IQCD EoS 0.1 100

 ϵ (GeV/fm³)

Indipendent fragmentation

Spectrum of heavy quarks produced in pp-collisions can be computed up to NLO in s with available tools Transition from quark momentum spectrum to hadron momentum, using fragmentation model:

$$\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z) \qquad \mathbf{q} \to \mathbf{\pi}, \mathbf{K}, \mathbf{p}, \mathbf{\Lambda} \dots$$
$$\mathbf{c} \to \mathbf{D}, \mathbf{D}_s, \mathbf{\Lambda}_c, \dots$$

Fragmentation function

- Fragmentation functions $D_{f \rightarrow h}$ are phenomenological functions to parameterize the *non-perturbative* parton-to-hadron transition (z = fraction of the parton momentum taken by the hadron h)

- Fragmentation functions assumed universal among energy and collision systems and constrained from e⁺e⁻and ep

- Different models for FFs are currently in use in literature:
- Peterson et al., $D(z) = \frac{\check{C}}{z\left(1-\frac{1}{z}-\frac{\epsilon}{1-z}\right)^2}$
- Kartvelishvili et al., $D(z) = C z^{\alpha} (1-z)$

Coalescence approach in phase space for HQ

Wigner function <-> Wave function

$$\Phi_M^W(\mathbf{r},\mathbf{q}) = \int d^3 r' e^{-i\mathbf{q}\cdot\mathbf{r}'} \varphi_M\left(\mathbf{r}+\frac{\mathbf{r}'}{2}\right) \varphi_M^*\left(\mathbf{r}-\frac{\mathbf{r}'}{2}\right)$$

 $\varphi_M(\mathbf{r})$ meson wave function Assuming gaussian wave function

$$f_M(x_1, x_2; p_1, p_2) = A_W \exp\left(-\frac{x_{r1}^2}{\sigma_r^2} - p_{r1}^2 \sigma_r^2\right)$$

For baryon $N_q=3$

$$f_H(...) = \prod_{i=1}^{N_q-1} A_W \exp\left(-\frac{x_{ri}^2}{\sigma_{ri}^2} - p_{ri}^2 \sigma_{ri}^2\right)$$

<u>Note</u>: only σ_r coming from $\varphi_M(\mathbf{r})$ or $\sigma_r^* \sigma_p = 1$ valid for harmonic oscillator with V(r) $\sigma_r^* \sigma_p > 1$ Wigner function **width** fixed by root-mean-square charge radius from **quark model**

Meson	$\langle r^2 \rangle_{ch}$	σ_{p1}	σ_{p2}
$D^+ = [c\bar{d}]$	0.184	0.282	
$D_s^+ = [\bar{s}c]$	0.083	0.404	
Baryon	$\langle r^2 \rangle_{ch}$	σ_{p1}	σ_{p2}
$\Lambda_c^+ = [udc]$	0.15	0.251	0.424
$\Xi_c^+ = [usc]$	0.2	0.242	0.406
$\Omega_c^0 = [ssc]$	-0.12	0.337	0.53

C.-W. Hwang, EPJ C23, 585 (2002); C. Albertus et al., NPA 740, 333 (2004) $\langle r^2 \rangle_{ch} = \frac{3}{2} \frac{m_2^2 Q_1 + m_1^2 Q_2}{(m_1 + m_2)^2} \sigma_{r1}^2$ (8) $+ \frac{3}{2} \frac{m_3^2 (Q_1 + Q_2) + (m_1 + m_2)^2 Q_3}{(m_1 + m_2 + m_3)^2} \sigma_{r2}^2$ $\sigma_{ri} = 1/\sqrt{\mu_i \omega}$ Harmonic oscillator relation $\mu_1 = \frac{m_1 m_2}{m_1 + m_2}, \ \mu_2 = \frac{(m_1 + m_2) m_3}{m_1 + m_2 + m_3}.$

Normalization $f_H(...)$ fixed by requiring $P_{coal}(p>0)=1$ which fixes A_w , additional assumption wrt standard coalescence which does not have confinement

Coalescence approach in phase space for HQ

S. Plumari, V. Minissale et al., Eur. Phys. J. **C78** no. 4, (2018) 348

- ♦ Normalization in f_W(...) fixed by requiring P_{coal}(p->0)=1 :others modify by hand σ_r to enforce confinement for a charm at rest in the medium
- ♦ The charm not "coalescencing" undergo fragmentation:

$$\frac{dN_{had}}{d^2 p_T \, dy} = \sum \int dz \frac{dN_{fragm}}{d^2 p_T \, dy} \frac{D_{had/c}(z, Q^2)}{z^2}$$

charm number conserved at each p_T, we have employed e⁺e⁻ FF now PYTHIA

LHC: results

wave function widths σ_p of baryon and mesons kept the same at RHIC and LHC!

The Λ_c/D^0 ratio is smaller at LHC energies: fragmentation play a role at intermediate p_T

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

RHIC: Baryon/meson

Coalescence

Following: L.W.Chen, C.M. Ko, W. Liu, M. Nielsen, PRC 76, 014906 (2007). K.-J. Sun, L.-W. Chen, PRC 95, 044905 (2017). For hypersurface of proper time τ and non relativistic limit: for $p_T \ll m \frac{\Lambda_c^+}{D^0} \propto \frac{g_\Lambda}{g_D} \left(\frac{m_T^\Lambda}{m_T^D}\right) e^{-(m^\Lambda - m^D)/T_C} \tau \mu_2$ $\mu_2 = \frac{m_3(m_1 + m_2)}{m_1 + m_2 + m_3}$ Is the reduced mass of the baryon

wave function widths σ_p of baryon and mesons kept the same at RHIC and LHC!

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

LHC: results

wave function widths σ_p of baryon and mesons kept the same at RHIC and LHC!

The Λ_c/D^0 ratio is smaller at LHC energies: fragmentation play a role at intermediate p_T

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

Braun-Munzinger, Stachel, PLB 490 (2000) 196 Statistical Thermal Model (SHM) + charm(SHMc) Yield per spin d.o. Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 10^{3} central collisions 10² grand canonical partition function 10 chemical potential \leftrightarrow $\ln Z_{i} = \frac{V g_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} dp \ln[1 \pm \exp(-(E_{i} - \mu))/T)]$ conservation quantum numbers 10^{-1} J/ψ (N_B, N_s, N_c) 10^{-2} **Equilibrium + hadron-resonance gas + freeze-out temperature.** Data (|y|<0.5), ALICE 10^{-3} Production depends on hadron masses and degeneracy, and on system properties. particles 10^{-4} antiparticles *Charm hadrons* according to thermal weights 10^{-5} Statistical Hadronization (T=156.5 MeV) the total charm content of the fireball is fixed by the measured open charm cross section. ⁴He total (+decays; +initial charm) 10^{-6} $N_{c\bar{c}}^{dir} = \frac{1}{2} g_c V \left(\sum n_{D_i}^{th} + n_{\Lambda_{ci}}^{th} \right) + g_c^2 V \left(\sum n_{\psi_i}^{th} + n_{\chi_i}^{th} \right)$ primordial (thermal) 10-0.5 1.5 2 2.5 3.5 3 pQCD production $N_{c,anti-c} = 9.6 \rightarrow g_c = 30.1$ (charm fugacity) Mass (GeV) Ratio 8.0 Ratio F Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 0.10\%$ Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 30-50\%$ d²N / dy dp_T (Ge[\] $\mathbf{D}^{0}, |y| < 0.5$ 0.6 Andronic et al., 10-0.5 JHEP 07 (2021) 035 0.4 10⁻² 0.3 $\mathbf{D}^{+}/\mathbf{D}^{0}$, |y| < 0.510⁻³ 0.2 JHEP 01 (2022) 174 $\mathbf{D}^{*+}/\mathbf{D}^{0}, |y| < 0.5$ ALICE data 0.1 ⊨ SHMc yields+blast wave SHMc + FastReso + corona SHMc + FastReso + corona JHEP 01 (2022) 174 10^{-4} U 1.4 1.2 d²N / dy d $p_{ m T}$ (GeV⁻¹) $\rightarrow p_{\tau}$ spectra D_{s}^{+}/D^{0} , |y| < 0.5 Λ_{c}/D^{0} , |y| < 0.510-Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 30-50\%$ Phys. Lett. B 827 (2022) 136986 arXiv:2112.08156 [nucl-ex] $\Lambda_{c}, |y| < 0.5$ 10⁻² 10^{-3} 0.8 0.6 10^{-4} 0.4 10^{-5} 0.2 10 12 14 8 16 6 10 12 10 12 14 14 $p_{_{T}}$ (GeV) p_{τ} (GeV) p_ (GeV)

<u> Statistical Thermal Model (SHM) + charm(SHMc)</u>

grand canonical partition function

 $\ln Z_{i} = \frac{V g_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} dp \ln[1 \pm \exp(-(E_{i} - \mu)/T)]$

chemical potential ↔ conservation quantum numbers (N_B, N_s, N_c)

Equilibrium + hadron-resonance gas + freeze-out temperature.

Production depends on hadron masses and degeneracy, and on system properties.

Charm hadrons according to thermal weights

the total charm content of the fireball is fixed by the measured open charm cross section.

 $N_{c\bar{c}}^{dir} = \frac{1}{2} g_c V \left(\sum_i n_{D_i}^{th} + n_{\Lambda_{ci}}^{th} \right) + g_c^2 V \left(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th} \right)$ pQCD production N_{c,anti-c} = 9.6 \Rightarrow g_c = 30.1 (charm fugacity)

Traditional view:

- QGP in Pb+Pb
- no QGP in p+p ("baseline")

Objections to applying hydro in pp

- Too few particles, cannot be collective
- System not in equilibrium

Traditional view:

- QGP in Pb+Pb
- no QGP in p+p ("baseline")

- Objections to applying hydro in pp
- Too few particles, cannot be collective
- System not in equilibrium

Small systems

- Indication that fragmentation depends on the collision system
- Assumption of their universality not supported by the measured cross sections

Data from: ALICE coll. EPJ C79 (2019) no.5, 388 ALICE coll. Meninno Hard Probes 2018

V. Minissale et al., *Phys.Lett.B* 821 (2021) 136622

•Thermal Distribution ($p_T < 2 \text{ GeV}$) $\frac{dN_q}{d^2 r_T d^2 p_T} = \frac{g_g \tau m_T}{(2\pi)^3} \exp\left(-\frac{\gamma_T (m_T - p_T \cdot \beta_T)}{T}\right)$ • Collective flow $\beta_T = \beta_0 \frac{r}{R}$ • Fireball radius+radial flow constraints dN_{ch}/dy and dE_T/dy • Minijet Distribution ($p_T > 2 \text{ GeV}$) • NO QUENCHING

<u>p+p @ 5 TeV</u>

- $t_{pp} = 1.7 \text{ fm/c}$
- $\beta_0 = 0.4$
- R=2.5 fm
- V~30 fm³

wave function widths σ_p of baryon and mesons kept the same at RHIC and LHC!

Other models:

He-Rapp, Phys.Lett.B 795 (2019) 117-121:

Increase ≈ 2 to Λ_c production: SHM with resonance not present in PDG

PYTHIA8 + color reconnection

CR with SU(3) weights and string length minimization $\sqrt[No CR]{}$

Error band correspond to $< r^2 >$ uncertainty in quark model Reduction of rise-and-fall behaviour in Λ_c / D^0 ratio:

- -Confronting with AA: Coal. contribution smaller w.r.t. Fragm.
- -FONLL distribution flatter w/o evolution trough QGP
- -Volume size effect

ALICE Coll., Physical Review Letters 128, 012001 (2022)

He-Rapp, Phys.Lett.B 795 (2019) 117-121

Statistical hadronization for charm hadrons:

- chemical equilibrium with different charm-hadron species

$$n_{i} = \frac{d_{i}}{2\pi^{2}} m_{i}^{2} T_{H} K_{2} \left(\frac{m_{i}}{T_{H}}\right)$$

-Increased set of baryons for the Λ_c production: PDG: $5\Lambda_c$, $3\Sigma_c$, $8 \Xi_c$, $2 \Omega_c$ RQM: $18 \Lambda_c$, $42 \Sigma_c$, $62 \Xi_c$, $34 \Omega_c$ Thermal yields to compute the charmed hadron-chemistry

Transverse-momentum spectra calculated with fragmentation of cquark spectrum from FONLL

J.Zhao, J.Aichelin, P.B.Gossiaux and K.Werner, arXiv:2310.08684 [hep-ph].

- EPOS4HQ well reproduce baryon/meson ratio of $\Lambda c / D^0$, $\Xi c / D^0$
- EPOS+ rescattering of heavy quarks with core particles + coalescence -> enhancement of baryon production
- Inclusion of all possible excited states predicted by the quark model and lattice QCD: D. Ebert et. al, PRD 84, 014025 (2011) A. Bazavov et al., PLB 737, 210 (2014)

Multi-charm in PbPb - KrKr – ArAr -OO

	00	ArAr	KrKr	PbPb
$R_0(fm)$	2.76	3.75	4.9	6.5
$R_{max}(fm)$	5.2	7.65	10.1	14.1
$\tau(fm)$	4	5	6.2	8
β_{max}	0.55	0.6	0.64	0.7
$V_{ y <0.5}(fm^3)$	345	920	2000	5000

Volume scales with A, now we employ the same value of SHM A. Andronic et al., JHEP (2021) 035

ΓO

9

#charm= 15 (PbPb), 4.35 (KrKr), 1.5(ArAr), 0.4(OO)

Yelds in PbPb: coalescence vs SHM

V. Minissale, S. Plumari, Y. Sun and V. Greco, arXiv:2305.03687.

 $\Sigma_c^0, \Xi_c^0, \Omega_c^0$, widths from quark model Ξ_{cc}, Ω_{cc} widths obtained rescaling with harm. oscillator

$$\sigma_{ri} = \frac{1}{\sqrt{\mu_i \omega}} \qquad \mu_1 = \frac{m_1 m_2}{m_1 + m_2}; \mu_2 = \frac{(m_1 + m_2) m_3}{m_1 + m_2 + m_3}$$

 \rightarrow upper limit: charm thermal distribution

→ lower limit: PbPb distribution with widths rescaled as standard Harm. Oscill. (ω from Ω_c^0)

Yelds in PbPb: coalescence

V. Minissale, S. Plumari, Y. Sun and V. Greco, arXiv:2305.03687.

 D^0 and Λ_c determine the yield, the radius variation is compensated by the constraint on the charm hadronization

A ± 50% in the radius of Ω_{ccc}

induces a change in the yield by about 1 order of magnitude

$$V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \sum_{i < j} V_{cc}(\mathbf{r}_i, \mathbf{r}_j). \qquad V_{c\bar{c}}(\mathbf{r}_i, \mathbf{r}_j) = -\frac{\alpha}{|\mathbf{r}_{ij}|} + \sigma |\mathbf{r}_{ij}|,$$

Solve the 3-body problem by a 1-body in higher dimensions hyperspherical coordinates method

 $\begin{bmatrix} \frac{1}{2m_c} \left(-\frac{d^2}{dr^2} - \frac{5}{r} \frac{d}{dr} \right) + v(r) \end{bmatrix} \varphi(r) = E\varphi(r)$ $W(\mathbf{r}, \mathbf{p}) = \int d^6 \mathbf{y} e^{-i\mathbf{p}\cdot\mathbf{y}} \psi\left(\mathbf{r} + \frac{\mathbf{y}}{2}\right) \psi^*\left(\mathbf{r} - \frac{\mathbf{y}}{2}\right)$ $W(r, p, \theta) = \frac{1}{\pi^3} \int d^6 \mathbf{y} e^{-ipy_1} \varphi\left(r_y^+\right) \varphi^*\left(r_y^-\right),$

$$\frac{dN}{d^2 \mathbf{P}_T d\eta} = C \int_{\Sigma} \frac{p^{\mu} d\sigma_{\mu}(R)}{(2\pi)^3} \int \frac{d^4 r_x d^4 r_y d^4 p_x d^4 p_y}{(2\pi)^6} \times F(\tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{p}_1, \tilde{p}_2, \tilde{p}_3) W(r_x, r_y, p_x, p_y),$$

 $Ω_{ccc}$ <r>=0.5 fm & $σ_r · σ_p ≈ 1.5$ similar to Tsinghua PLB746 (2015)

Yelds in PbPb: coalescence vs SHM

V. Minissale, S. Plumari, Y. Sun and V. Greco, arXiv:2305.03687.

 $\Sigma_c^0, \Xi_c^0, \Omega_c^0$, widths from quark model Ξ_{cc}, Ω_{cc} widths obtained rescaling with harm. oscillator

$$\sigma_{ri} = \frac{1}{\sqrt{\mu_i \omega}} \qquad \mu_1 = \frac{m_1 m_2}{m_1 + m_2}; \mu_2 = \frac{(m_1 + m_2) m_3}{m_1 + m_2 + m_3}$$

→ upper limit: charm thermal distribution → lower limit: PbPb distribution with widths rescaled as standard Harm. Oscill. (ω from Ω_c^0)

	D^0	Λ_c	$\Xi_{cc}^{+,++}$	Ω_{ccc}
00	0.156	0.0732	$3 - 12.1 \cdot 10^{-5}$	$2.2 - 29.2 \cdot 10^{-8}$
ArAr	0.543	0.301	$1.9 - 6.6 \cdot 10^{-4}$	$2.5 - 26.3 \cdot 10^{-7}$
KrKr	1.564	0.835	$0.78 - 2.6 \cdot 10^{-3}$	$1.5 - 14.9 \cdot 10^{-6}$
PbPb	5.343	3.0123	$4 - 12.5 \cdot 10^{-3}$	$0.12 - 1.01 \cdot 10^{-4}$

Ratios of pT distribution Ωccc in PbPb/KrKr/ArAr/OO

- → It can be a meter of non-equilibrium. Translation of feature of charm spectra at low p_T into higher momentum region.
- → More sensitive for multicharm respect to D mesons and Λ_c.
 Both effects of light quarks and fragmentation

V. Minissale, S. Plumari, Y. Sun and V. Greco, arXiv:2305.03687.

Conclusion

• Charm hadronization in AA different than in e⁺e⁻ and ep collisions

-Coalescence+fragmentation/Resonance Recombination Model enhancement of Λ_c production at intermediate $p_T \rightarrow \Lambda_c/D^0 \sim 1$ for $p_T \sim 3 \text{ GeV}$ -SHM with charm provide information on charm quark thermalization at low p_T

• In p+p assuming a medium:

- Coal.+fragm. good description of heavy baryon/meson ratio (closer to the data for Λ_c/D^0 , Ξ_c/D^0 , Ω_c/D^0)
- SHM+fragmentation able to capture the $\Lambda_{\rm c}$ production
- The yield of multi-charm decreases slowly with A in a coalescence approach
 - role of non-equilibrium distribution function

Yelds scaling with A

For coalescence, in an homogeneous density background in equilibrium at fixed T, discarding flow and wave functions effects the expected scaling is:

$$V\left(\frac{N_c}{V}\right)^c = N_c \left(\frac{N_c}{V}\right)^{C-1}$$

with $N_c \propto A^{4/3}$ and $V \propto A$
 \rightarrow the scaling corresponds to $\frac{dN}{dy} \propto A^{\frac{C+3}{3}}$
like in SHM w/o canonical suppression

 $\langle N^3 \rangle > \langle N \rangle^3$

like in Shivi w/o canonical suppression

 \rightarrow If the $p_{\scriptscriptstyle T}\mbox{-}distribution$ does not change we obtain the scaling expected

→ There is an effect due to different charm distributions. In Ar-Ar it reduces Ω_{ccc} by \approx 1.3 factor, in O-O it is \approx 1.7

 \rightarrow the cube of the distribution gives an idea of this difference, but Wigner function mitigate the effect

A larger production of coalescence w.r.t. SHM for small systems:

- Lack of canonical suppression, but e-b-e fluctuations can enhance production?

Multi-charm production in PbPb, KrKr, ArAr, OO

Baryon			
$\Xi_{cc}^{+,++} = dcc, ucc$	3621	$\frac{1}{2}(\frac{1}{2})$	
$\Omega_{scc}^+ = scc$	3679	$\overline{0}\left(\frac{1}{2}\right)$	
$\Omega_{ccc}^{++} = ccc$	4761	$0(\frac{3}{2})$	
Resonances			
Ξ_{cc}^{*}	3648	$\frac{1}{2}(\frac{3}{2})$	$1.71 \times g.s$
Ω^*_{scc}	3765	$\overline{0}\left(\frac{3}{2}\right)$	$1.23 \times g.s$

like S.Cho and S.H. Lee, PRC101 (2020) from R.A. Briceno et al., PRD 86(2012)

Strengths of the approach:

- Does not rely on distribution in equilibrium for charm
 - \rightarrow useful for small AA down to pp collisions and at p_ $_{\rm T}\!>$ 3-4 GeV
- Provide a $p_{\scriptscriptstyle T}$ dependence of spectra $\,$ and their ratios vs $p_{\scriptscriptstyle T}$

Widths from harmonic oscillator rescaling

	Ξ_c	Ω_c	$\Xi_{cc}^{(scal.\omega)}$	$\Omega_{ccc}^{(scal.\omega)}$
$\sigma_{p_1}(GeV)$	0.262	0.345	0.317	0.668
$\sigma_{p_2}(GeV)$	0.438	0.557	0.573	0.771
$\sigma_{r_1}(fm)$	0.751	0.572	0.622	0.295
$\sigma_{r_2}(fm)$	0.450	0.354	0.344	0.256
$\langle r^2 \rangle_{ch} (fm^2)$	0.2	-0.12	0.363	0.09
$\langle r^2 \rangle (fm^2)$	0.745	0.428	0.545	0.13
ω	1.03e - 2	1.5e-2	1.03e - 2	1.5e - 2

Heavy flavour (charm): Resonance decay

In our calculations we take into account main hadronic channels, including the ground states and the first excited states for D and Λ_c

MESONS

D⁺ (*I*=1/2,*J*=0)

D⁰ (*I*=1/2,*J*=0)

D_s⁺ (*I*=0,*J*=0)

$\underbrace{ \begin{array}{c} \textbf{Statistical factor} \\ [(2J+1)(2I+1)]_{H*} \\ [(2J+1)(2I+1)]_{H} \end{array} \left(\frac{m_{H*}}{m_{H}} \right)^{3/2} e^{-(E_{H*}-E_{H})/T} } \\ \end{array} }$

BARYONS

Λ_c⁺ (*I*=0, *J*=1/2)

Resonances

D* + (I=1/2,J=1)	\rightarrow	D ⁰ π ⁺ D ⁺ X	B.R. 68% B.R. 32%
D* ⁰ (<i>I</i> =1/2, <i>J</i> =1)	\rightarrow	D ⁰ π ⁰ D ⁰ γ	B.R. 62% B.R. 38%
D _s *+ (I=0,J=1)	\rightarrow	D _s + X	B.R. 100%
D_{s0}*+ (<i>I</i> =0, <i>J</i> =0)	\rightarrow	D _s + X	B.R. 100%

Resonances $\Lambda_{c}^{+}(2595) (I=0, J=1/2)$ $\rightarrow \Lambda_{c}^{+}$ B.R. 100% $\Lambda_{c}^{+}(2625) (I=0, J=3/2)$ $\rightarrow \Lambda_{c}^{+}$ B.R. 100% $\Sigma_{c}^{+}(2455) (I=1, J=1/2)$ $\rightarrow \Lambda_{c}^{+}\pi$ B.R. 100% $\Sigma_{c}^{+}(2520) (I=1, J=3/2)$ $\rightarrow \Lambda_{c}^{+}\pi$ B.R. 100%

Hadronization: fragmentation and coalescence

Baryon to Meson Ratios

Proton to pion ratio Enhancement:

In vacuum from fragmentation functions the ratio is small $\frac{D_{q \to p}(z)}{D_{q \to \pi}(z)} < 0.25$

Elliptic flow splitting:

For p_T >2 GeV Both hydro and fragmentation predicts similar v_2 for pions and protons

Another hadronization mechanism is by coalescence:

Formalism originally developed for light-nuclei production from coalescence of nucleons on a freezeout hypersurface.

Extended to describe meson and baryon formation in AA collisions from the quarks of QGP through $2\rightarrow 1$ and $3\rightarrow 1$ processes

V. Greco, C.M. Ko, P. Levai PRL 90, 202302 (2003).
V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRL 90, 202303 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRC 68,044902 (2003).

