

Flow measurements with the LHCb detector

Samuel Belin on behalf of the LHCb collaboration

Flow in heavy-ion collisions

- Anisotropy in distributions of final-states particles described by Fourier transforms
- Those Fourier coefficient (v_n), with the initial geometry of the collision, can provide detailed information on the transport properties of the created medium (Quark Gluon Plasma)
- * Well described by hydrodynamic model

Elliptic flow in a non-central symmetric heavy-ion collisions

The LHCb detector

Single arm spectrometer fully instrumented in pseudorapidity range 2 < η < 5

The LHCb detector

Excellent tracking and PID performance in *pp* and *p*Pb collisions

Available Datasets

Collider mode

Still many possibilities with fixed target samples

Correlation functions

- Correlation function: $\frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \eta \ d\Delta \varphi} = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)} \times B(0,0) \quad \longleftarrow \quad \text{Normalization factor}$
- Same-event h-h pairs:
 - all possible pairs within the same event
- Mixed-event h-h pairs:
 - The two hadrons from two different events
 - Correlated through detector effects, no real physics correlation
 - Background

Samuel Belin samuel.belin@cern.ch

 $\mathsf{B}(\Delta\eta,\Delta\varphi) = \frac{1}{N_{trig}} \frac{d^2 N^{mix}}{d\Delta\eta \ d\Delta\varphi}$

 $S(\Delta \eta, \Delta \varphi) = \frac{1}{N_{tria}} \frac{d^2 N^{same}}{d\Delta \eta \ d\Delta \varphi}$

Flow in PbPb collisions at LHCb

Flow in PbPb collisions at LHCb

Flow in PbPb collisions at LHCb

LHCB-PAPER-2023-031

- Cleary lower v₂ for the forward region
- * Plateau for the v_2 after 2 GeV/c
- No significative difference of v₂
 for the two centrality bins
- V₃ compatible between ATLAS and LHCb and reach below
 zero value at high p_T

IMPORTANT INPUT FOR THE FORWARD REGION

Flow in small system

ATLAS, PRC 90,044906 (2014)

• v₂ thought to be present only in large system such as PbPb but seen in small system as well:

- Style a debate on the origin of this « ridge like » structure
- Original geometry gives flow in final stage?
- One fluid for all colliding system ? (Use of hydrodynamic to describe all system)
- Initial correlation
- Everything together ?

¹⁰ Can we see it in *p*Pb collisions from LHCb

Flow in small system

- Evidence of a ridge-like structure as well in pPb/Pbp data from LHCb
- Visible only in collisions with high multiplicity
- Ongoing analysis for the charged hadrons flow in pPb and Pbp at 8 TeV

Prospect in LHCb

- LHCb has the power to investigate the flow in small system thanks to:
 - * The Fixed Target system (SMOG2)
 - * The geometry of the detector
 - Precision in measuring heavy flavors
- LHCb can further study flow in AA collisions thanks to the new freshly recorded PbPb datasample

Prospect in LHCb

- LHCb has the power to investigate the flow in small system thanks to:
 - * The Fixed Target system (SMOG2)
 - * The geometry of the detector
 - Precision in measuring heavy flavors
- LHCb can further study flow in AA collisions thanks to the new freshly recorded PbPb datasample

LHCb upgrade run 3

LHCb-TDR-020

SMOG2 : A dedicated fixed target system to run simultaneously with normal collisions

Length: 20 cm, placed in front of the VELO

- Higher density of the gas (100 times higher luminosity)
- Better control of the gas density (better luminosity determination)
- New gas H₂, D₂, O₂ in addition to all noble gases

LHCb upgrade run 3

LHCb-FIGURE-2023-008

SMOG2 : A dedicated fixed target system to run simultaneously with normal collisions

Less than a hour of commissioning data-taking

VERY HIGH STATISTIC FOR FLOW IN SMALL SYSTEM

The Initial Geometry

- * In small systems, the initial geometry of the collision seems to have an impact on final state correlations
- * The initial geometry can be characterize by the eccentricities variables:

The Initial Geometry

Identified Flow

ALI-PREL-503282

- Mass ordering at low-pT
- Baryon-meson change of ordering at intermediate pT
- Models must combine
 Hydrodynamics, quark
 coalescence and jet
 fragmentation to describe
 data

Complementary results could be provided by LHCb for the forward region!

Identified Flow

Heavy Flavor

20

Phys. Lett. B 791 (2019) 172

- Result from CMS shows a compatible flow for J/ψ and D⁰. Cannot be explain by hydrodynamic.
- Heavy flavor hadrons may be more sensitive to possible initial-state gluon saturation effects

LHCb preliminary

p-Pb, $\sqrt{s_{NN}} = 8 \text{ TeV}$

1900

 $Mass(\pi^+K)$ (MeV/c²)

 $\sim 13 \text{ nb}^{-1}$

 LHCb is ideal to thanks to its geometry and precision

1850

 $\underline{\times}10^3$

 2 MeV/c^2

Events /

600

500

400

300

200

100

0

1800

Conclusion

- * First measurement of flow in the forward region at LHC in PbPb collisions
- * Incoming measurement in *p*Pb/Pbp of:
 - * Charged hadrons flow
 - * Heavy flavor flow
- * With the new Run3 data:
 - * New PbPb sample with higher centrality reach
 - * Many new fixed-target samples to come (geometry, heavy flavor...)

MANY POSSIBILITIES AT LHCb TO SHED LIGHT ON THE ORIGIN OF FLOW IN LARGE AND SMALL SYSTEM!

Elliptic flow

In equations

Particle anisotropy in terms of a simple Fourier decomposition

$$\rho(\phi_i | \Psi) = \overline{\rho} \left(1 + 2 \sum_{n=1}^{\inf} v_n cos(n(\phi_i - \Psi)) \right)$$

Average particle density Orientation angle of the reaction difficult to measure in LHCb We consider then the 2 particle correlations

$$dN^{pair}/d\phi = A\left(1 + 2\sum_{n=1}^{\inf} V_{n\Delta}cos(n(\Delta\phi))\right)$$

Complexity of a hadronic collision

- Important to study QCD in confined and unconfined medium (QGP)
- *proton-proton* and *proton-Plomb* _____ collisions → confined QCD
- * Plomb-Plomb collisions \rightarrow QGP

LHCb is the ideal detector for confined QCD

LHCb upgrade run 3

Energy deposit in the calorimeter Events [a.u.] / 0.1 [TeV] 10₋₂ 10₋₃ 10₋₄ 10₋₂ LHCb 20-30% 10-20% 0-10% 10^{-6} 20 40 0 60 Energy [TeV] Run 2 😕 Run 3 🙂! Run 4 😀! Run 5 🤑!

Improved tracking system pushes further the limitation of the detector

- * Access to more central collisions
- * QGP study possible with run3 data!
- Many new study possible (quarkonia suppression, low-mass mesons, flow...)
- Expect higher reach in run 4 and no limitations for run
 5
 - * Note there is no limitation for the SMOG2 system

Centrality determination

