Correlation function constraints on meson-baryon interaction from U χ PT in the S = -2 sector

Isaac Vidaña, INFN Catania

WPCF 2023 – XVI Workshop on Particle Correlations and Femtoscopy & IV Resonance Workshop Nov 6th- 10th 2023 Catania (Italy)

In collaboration with:

- Valentina Mantovani Sarti, TUM Munich (ALICE coll.)
- Albert Feijoo, IFIC Valencia
- Angels Ramos, UB Barcelona
- Francesco Giacosa, JKU Kielce
- Tetsuro Hyodo, TMU Tokyo
- Yuki Kamiya, HISKP Bonn

This talk in few words

In this work:

- We use for the first time femtoscopic data to constrain the parameters of a low-energy chiral effective QCD Lagrangian
- Particularly, we focus on the strangeness S = -2 meson-baryon interaction sector probed via $K^-\Lambda$ correlations recently measured in *pp* collisions by the ALICE Collaboration
- We provide new insights on the molecular nature of the $\Xi(1620)$ state

Details can be found in arXiv: 2309.08756

The S = -2 Meson-Baryon Interaction

The lack of scattering data associated to technical experimental difficulties has not allowed to fix the meson-baryon interaction in the strangeness sector S = -2 yet but the use of femtoscopic data offers an unprecedented opportunity to fix it

- This interaction is dominated by the presence of the $\Xi(1620)$ & $\Xi(1690)$ resonances whose nature and properties cannot be accommodated within the quark model picture, and are still subject to debate
- Similarly to the well known case of the Λ(1405), whose molecular state nature arises from the coupled dynamics of the πΣ & KN channels, also the Ξ(1620) & Ξ(1690) resonances might be dynamically generated from the interplay of several channels, thereby acquiring a molecular nature

Observation of the $\Xi(1620)$ & $\Xi(1690)$ resonances

The first observation of the neutral Ξ⁰(1620) decaying into Ξ⁻π⁺ via the Ξ⁺_c → π⁺π⁺Ξ⁻ process was reported in 2019 by the BELLE collaboration

$$M = 1610.4 \pm 6.0^{+6.1}_{-4.2} \text{ MeV}$$
$$\Gamma = 59.9 \pm 4.8^{+2.8}_{-7.1} \text{ MeV}$$

✓ PDG status: *
✓
$$J^P = \frac{?}{?}$$
. Perhaps $J^P = \frac{1}{2}^{-1}$
as the $S = -2$ counterpart
of $\Lambda(1405)$

• A 4σ evidence of $\Xi(1690)$ in the same data sample was also reported

Observation of the $\Xi(1690)$ & $\Xi(1820)$ resonances

• A couple of years later the LHCb collaboration reported the observation of two narrow excited Ξ^- states in the $K^-\Lambda$ invariant mass distribution obtined from the analysis of the $\Xi_b^- \rightarrow J/\Psi\Lambda K^-$ decay, identifying the peak located at low energy with the $\Xi^-(1690)$ resonance

 $M = 1692.0 \pm 1.3^{+1.2}_{-0.4} \text{ MeV}$ $\Gamma = 25.9 \pm 9.5^{+14.0}_{-13.5} \text{ MeV}$

R. Aaij et al., Sci, Bull. 66, 1278 (2021)

• Second peak was identified with the $\Xi^{-}(1820)$ resonance

 $M = 1822.7 \pm 1.5^{+1.0}_{-0.6} \text{ MeV} \qquad \Gamma = 36.0 \pm 4.4^{+7.8}_{-8.2} \text{ MeV}$

First experimental observation of the $\Xi(1620)$ decaying into $K^-\Lambda$ pairs

- Very recently the ALICE Collaboration measured the $K^-\Lambda$ correlation function in *pp* collisions at $\sqrt{s} = 13$ TeV
- This measurement represents nowadays the most precise data on the S = -2 meson-baryon interaction and it has provided the first experimental observation of the $\Xi(1620)$ decaying into $K^-\Lambda$ pairs
- The measured correlation function presents also peak structures compatible with the Ω⁻, and the strangeness S= 2 states Ξ(1690) & Ξ(1820)

<u>Unpredecented opportunity to fix the S = -2 meson-baryon</u> <u>interaction</u>

ALICE Collaboration, PLB 845, 138145 (2023)

(see also Dimitar Mihaylov's talk on Monday)

The S = -2 Meson-Baryon Interaction Model

The S = -2 meson-baryon is described by a chiral effective lagrangian $\mathcal{L}_{MB}^{eff} = \mathcal{L}_{MB}^{LO} + \mathcal{L}_{MB}^{NLO}$

Leading order (LO)

• Next to leading order (NLO) (novelty of this model, A. Feijoo et al., PLB 841, 137927 (2023))

 $\mathcal{L}_{MB}^{NLO} = b_D \langle \bar{B} \{ \chi_+, B \} \rangle + b_F \langle \bar{B} [\chi_+, B] \rangle + b_0 \langle \bar{B} B \rangle \langle \chi_+ \chi \rangle$ $+ d_1 \langle \bar{B} \{ u_\mu, [u^\mu, B] \} \rangle + d_2 \langle \bar{B} [u_\mu, [u^\mu, B]] \rangle$ $+ d_3 \langle \bar{B} u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B} B \rangle \langle u^\mu u_\mu \rangle$

The S = -2 Meson-Baryon Interaction Model

• Total interaction kernel: $V_{ij} = V_{ij}^{WT} + V_{ij}^D + V_{ij}^C + V_{ij}^{NLO}$

$$V_{ij}^{WT} = -\frac{C_{ij}^{WT}}{4f^2} \mathcal{N}_i \mathcal{N}_i (\sqrt{s} - M_i - M_j) \qquad V_{ij}^D = -\sum_{k=1}^8 \frac{C_{ii,k}^{Born} C_{jj,k}^{Born}}{12f^2} \mathcal{N}_i \mathcal{N}_j \frac{(\sqrt{s} - M_i)(\sqrt{s} - M_k)(\sqrt{s} - M_j)}{s - M_k^2}$$

$$V_{ij}^{C} = \sum_{k=1}^{8} \frac{C_{ii,k}^{Born} C_{jj,k}^{Born}}{12f^{2}} \mathcal{N}_{i} \mathcal{N}_{j} [\sqrt{s} + M_{k} - \frac{(M_{i} + M_{k})(M_{j} + M_{k})}{2(M_{i} + E_{i})(M_{j} + E_{j})} (\sqrt{s} - M_{k} + M_{i} + M_{j}) + \frac{(M_{i} + M_{k})(M_{j} + M_{k})}{4q_{i}q_{j}} \\ x \left[(\sqrt{s} + M_{k} - M_{i} - M_{j}) - \frac{s + M_{k}^{2} - m_{i}^{2} - m_{j}^{2} - 2E_{i}E_{j}}{2(M_{i} + E_{i})(M_{j} + E_{j})} (\sqrt{s} - M_{k} + M_{i} + M_{j}) \right] \ln \frac{s + M_{k}^{2} - m_{i}^{2} - m_{j}^{2} - 2E_{i}E_{j} - 2q_{i}q_{j}}{s + M_{k}^{2} - m_{i}^{2} - m_{j}^{2} - 2E_{i}E_{j} + 2q_{i}q_{j}} \right] \\ V_{ij}^{NLO} = \frac{1}{f^{2}} \mathcal{N}_{i} \mathcal{N}_{i} \left(D_{ij} - 2 \left(\omega_{i}\omega_{j} + \frac{q_{i}^{2}q_{j}^{2}}{3(M_{i} + E_{i})(M_{j} + E_{j})} \right) L_{ij} \right)$$

- ✓ Weinberg-Tomozawa coefficients C_{ij}^{WT} are determined by chiral SU(3) symmetry
- ✓ Born coefficients $C_{ii,k}^{Born}$ are function of D = 0.8, F = 0.46 (constrained by $g_A = D + F = 1.26$)
- ✓ NLO coefficients D_{ij} , L_{ij} are function of the Lagragian parameters

 $f, b_0, b_D, b_F, d_1, d_2, d_3, d_4$: determined by fitting the $K^-\Lambda$ correlation function

The S = -2 Meson-Baryon Interaction Model

Unitarized scattering amplitudes (coupled-channel Bethe-Salpeter equation)

$$T_{ij} = V_{ij} + V_{il}G_lT_{lj} \xrightarrow{\text{on-shell factorization approach}} T_{ij} = (1 - V_{il}G_l)^{-1}V_{lj}$$
system of algebraic equations

✓ meson-baryon propagator

$$G_{l} = \frac{2M_{l}}{(4\pi)^{2}} \left\{ a_{l}(\mu) + \ln\frac{M_{l}^{2}}{\mu^{2}} + \frac{m_{l}^{2} - M_{l}^{2} + s}{2s} \ln\frac{m_{l}^{2}}{M_{l}^{2}} + \frac{q_{cm}}{\sqrt{s}} \ln\frac{(s + 2\sqrt{s}q_{cm})^{2} - (M_{l}^{2} - m_{l}^{2})^{2}}{(s - 2\sqrt{s}q_{cm})^{2} - (M_{l}^{2} - m_{l}^{2})^{2}} \right\}$$

 $a_l(\mu)$: substraction constants (SCs) replace the divergency for the given dimensional regularization scale μ taken to be 1 GeV.

Using isospin symmetry arguments the number of independent SC is 4 to be determined aso in the fitting procedure of the $K^-\Lambda$ correlation function

~

Correlation Function of a Multi-Channel System

In the case of a multi-channel system the correlation function of a given observed channel *i* (e.g., $K^-\Lambda$) reads

$$C_i(k^*) = \sum_j \omega_j^{prod} \int d^3 r^* S_j(r^*) |\Psi_{ji}(k^*, r^*)|^2$$

- ω_j^{prod} : production weights take into account how many *j* pairs, produced as initial state, can convert to the measured *i* final state
 - ✓ Depend on yields & kinematics: $\omega_j^{prod} = \frac{N_j^{prim}}{N_i^{prim}} = \frac{N_{j_A}^{prim} N_{j_B}^{prim}}{N_{i_A}^{prim} N_{i_B}^{prim}}$

Channel j	ω_j^{prod}
$\Lambda \mathrm{K}^-$	1.000
$\pi^{-}\Xi^{0}$	$1.536\substack{+0.005\\-0.012}$
$\pi^0 \Xi^-$	$1.584\substack{+0.001\\-0.006}$
$K^-\Sigma^0$	$0.682\substack{+0.001\\-0.001}$
$\overline{\mathrm{K}}^{0}\Sigma^{-}$	$0.630\substack{+0.001\\-0.004}$
$\eta \Xi^-$	$0.178\substack{+0.023\\-0.022}$

✓ Particle abundances estimated from Thermal¹ & Transport² moldels

¹ V. Vovchenko & H. Stoecker, Comp. Phys. Commun. 244, 295 (2019) ² S. Portebouf et al., arXiv:1006.2987

Correlation Function of a Multi-Channel System

In the case of a multi-channel system the correlation function of a given observed channel *i* (e.g., $K^-\Lambda$) reads

$$C_i(k^*) = \sum_j \omega_j^{prod} \int d^3 r^* S_j(r^*) |\Psi_{ji}(k^*, r^*)|^2$$

S_j(r*): emitting source describes the probability of emitting the particle pair j at a relative distance r*.
 In general it may be different for different channels

$$S_{j}(r^{*}) = \Lambda_{s} \left(\omega G_{1}^{j}(r^{*}) + (1 - \omega) G_{2}^{j}(r^{*}) \right)$$
$$G_{k}^{j}(r^{*}) = \frac{1}{\sqrt{4\pi}R_{k}^{j^{3}}} exp\left(-\frac{r^{*^{2}}}{4R_{k}^{j^{2}}}\right), \qquad (k = 1, 2)$$

Channels	$R_{1}^{{}_{\rm i}}~({\rm fm})$	$R_2^{ m i}~({ m fm})$	ω	Λ_s
$\Lambda K^{-}, \Sigma \overline{K}$	$1.202\substack{+0.043\\-0.042}$	$2.330\substack{+0.050\\-0.045}$	$0.7993\substack{+0.0037\\-0.0027}$	$0.9806\substack{+0.0006\\-0.0008}$
$\pi\Xi$	$1.371\substack{+0.041\\-0.040}$	$3.338\substack{+0.038\\-0.035}$	$0.7415\substack{+0.0017\\-0.0035}$	$0.9806\substack{+0.0019\\-0.0013}$
$\eta \Xi^-$	$1.21\substack{+0.040\\-0.040}$	$2.28\substack{+0.040\\-0.040}$	0.86	$0.988\substack{+0.001\\-0.001}$

ALICE Collaboration, PLB 845, 138145 (2023)

Correlation Function of a Multi-Channel System

In the case of a multi-channel system the correlation function of a given observed channel *i* (e.g., $K^-\Lambda$) reads

$$C_i(k^*) = \sum_j \omega_j^{prod} \int d^3 r^* S_j(r^*) |\Psi_{ji}(k^*, r^*)|^2$$

• $\Psi_{ji}(k^*, r^*)$: relative wave function describes the scattering from any initial channel *j* to the final observed channel *i* & it can be obtained from the scattering amplitude T_{ji} as

$$\Psi_{ji}(k^*,r^*) = \delta_{ji}j_0(k^*r^*) + \int d^3q \, \frac{j_0(qr^*)T_{ji}(E,k^*,q)}{E - E_1^{(j)}(q) - E_2^{(j)}(q) + i\eta}$$

Fitting the $K^-\Lambda$ Correlation Function

The first step of our fitting procedure is to remove the background in the experimental data

 $C_{K^-\Lambda}^{background}(k^*)$ is taken from the experimental analysis performed by the ALICE collaboration

 $C_{K^{-}\Lambda}^{background}(k^{*}) = \alpha_{pol3} (1 + b{k^{*}}^{2} + c{k^{*}}^{3}) + \alpha_{\Omega} f_{G}(M_{\Omega}, \sigma_{\Omega}) + \alpha_{\Xi(1820)} f_{BW}(M_{\Xi(1820)}, \Gamma_{\Xi(1820)})$

Fitting the $K^-\Lambda$ Correlation Function

 $C_{K^-\Lambda}(k^*)$ is then fitted to the experimental data after removing the background contribution

1.4 $C_{model}(K^*)$ $C_{exp}(K^*)/C_{background}(K^*)$ 1.3 1.2 C(K*) 1.1 0.9 100 200 300 400 500 0 K^{*} [MeV/c]

$a_{\Xi\pi}$	-3.71 ± 0.17
$a_{\Lambda \overline{\mathrm{K}}}$	-2.02 ± 0.14
$a_{\Sigma\overline{\mathrm{K}}}$	-1.69 ± 0.05
$a_{\Xi\eta}$	-3.93 ± 0.12
f/f_π	1.001 ± 0.006
$b_0 \; [{ m GeV}^{-1}]$	-1.13 ± 0.12
$b_D \; [{ m GeV}^{-1}]$	0.05 ± 0.13
$b_F \; [{ m GeV}^{-1}]$	0.30 ± 0.07
$d_1 \; [{\rm GeV}^{-1}]$	-0.18 ± 0.03
$d_2 \; [{\rm GeV}^{-1}]$	-0.26 ± 0.02
$d_3 \; [{\rm GeV}^{-1}]$	-0.71 ± 0.09
$d_4 \; [{\rm GeV}^{-1}]$	-0.44 ± 0.01
N_D	1.0024 ± 0.0005

Errors determined with the bootstrap method

Fitting the $K^-\Lambda$ Correlation Function

$a_{\Xi\pi}$	-3.71 ± 0.17
$a_{\Lambda \overline{\mathrm{K}}}$	-2.02 ± 0.14
$a_{\Sigma\overline{\mathrm{K}}}$	-1.69 ± 0.05
$a_{\Xi\eta}$	-3.93 ± 0.12
f/f_{π}	1.001 ± 0.006
$b_0 \; [{ m GeV}^{-1}]$	-1.13 ± 0.12
$b_D \; [{ m GeV}^{-1}]$	0.05 ± 0.13
$b_F \; [{ m GeV}^{-1}]$	0.30 ± 0.07
$d_1 \; [{\rm GeV}^{-1}]$	-0.18 ± 0.03
$d_2 \; [{ m GeV}^{-1}]$	-0.26 ± 0.02
$d_3 \; [{\rm GeV}^{-1}]$	-0.71 ± 0.09
$d_4 \; [{\rm GeV}^{-1}]$	-0.44 ± 0.01
N_D	1.0024 ± 0.0005
$a_{\Xi\eta} \ f/f_{\pi} \ b_0 \; [{ m GeV}^{-1}] \ b_D \; [{ m GeV}^{-1}] \ b_F \; [{ m GeV}^{-1}] \ d_1 \; [{ m GeV}^{-1}] \ d_2 \; [{ m GeV}^{-1}] \ d_3 \; [{ m GeV}^{-1}] \ d_4 \; [{ m GeV}^{-1}] \ d_4 \; [{ m GeV}^{-1}] \ N_D$	$\begin{array}{c} -3.93 \pm 0.12 \\ \hline 1.001 \pm 0.000 \\ \hline -1.13 \pm 0.12 \\ 0.05 \pm 0.13 \\ 0.30 \pm 0.07 \\ \hline -0.18 \pm 0.03 \\ \hline -0.26 \pm 0.02 \\ \hline -0.71 \pm 0.03 \\ \hline -0.44 \pm 0.03 \end{array}$

Errors determined with the bootstrap method

Effect of coupled channels in the $K^-\Lambda$ Correlation Function

All production weights are set equal to 1 to analyze the coupled channel dynamics stemming from the underlying strong interaction

We observe:

- Coupled-channel effects larger for small colliding systems where particle pairs are produced at 1 - 2 fm. As source size increase the $K^-\Lambda$ correlation function is dominated by the elastic contribution $K^-\Lambda \to K^-\Lambda$
- Increase of the $K^-\Lambda$ correlation function when including the contribution of the ineslastic channels
 - ✓ Inclusion of $\pi^- \Xi^0$ and $\pi^0 \Xi^-$ shift upward it without modifying its momentum dependence
 - ✓ Inclusion of $K^-\Sigma^0$ and $\overline{K}^0\Sigma^-$ channels lead to a modification of the correlation function profile in the region where the $\Xi(1620)$ and the $\Xi(1690)$ are located
 - ✓ Inclusion of $\eta \Xi^-$ leads to an enhancement on these regions

$\Xi(1620)$ & $\Xi(1690)$ resonances

mass M : width Γ :	1616.18 MeV 23.03 MeV		1670.43 MeV 7.17 MeV	
Riemann sheet:	(+++)		(+++)	
	$ g_i $	$\left g_{i}^{2}dG/dE ight $	$ g_i $	$\left g_{i}^{2}dG/dE ight $
$\pi^{-}\Xi^{0}(1454)$	0.50	0.013	0.17	0.0014
$\pi^0 \Xi^-(1456)$	0.33	0.006	0.41	0.0079
${ m K}^-\Lambda(1609)$	0.92	0.155	0.06	0.0003
$\mathrm{K}^-\Sigma^0(1686)$	1.24	0.099	2.30	0.836
$\overline{\mathrm{K}}^{0}\Sigma^{-}(1695)$	1.51	0.135	1.32	0.215
$\eta \Xi^-(1868)$	2.97	0.243	0.16	0.0009
Experimental Ξ^* :	3	$\Xi(1620)$ [1]	Ξ(1690) [2]
mass M :	1610.	$4 \pm 6.0^{+5.9}_{-3.5} \text{ MeV}$	1690	$0 \pm 10 \mathrm{MeV}$
width Γ :	59.9	$\pm 4.8^{+2.8}_{-3.0}$ MeV	20	$\pm 15 \text{ MeV}$

[1] M. Sumihama et al., PRL 122, 072501 (2019)

[2] R. L. Workman et al., PTEP 2022, 083C01 (2022)

 Both poles found in the physically relevant Riemann sheet

Close to a pole $T_{ij} \sim \frac{g_i g_j}{\sqrt{s} - z_p}$, $M = \operatorname{Re}(z_p)$, $\Gamma = -2\operatorname{Im}(z_p)$

- Masses & Widths compatible with experimental data (key role of Born & NLO terms)
- The strong coupling of $\Xi(1620)$ to $\overline{K}\Sigma$, & $\eta\Xi$ channels reveals a change of paradigm in the interpretation as a molecular state of this resonance
 - ✓ All former works: $πΞ \bar{K}Λ$ molecule with non-negligible coupling to the $\bar{K}Σ$ channel
 - ✓ This work: \overline{K} Σ − ηΞ mixture
- Ξ(1690) located ~ 20 MeV below the experimental value & ~ 16 MeV below the K⁻Σ⁰ thresold, reducing the possibility of decaying to it & leading to a reduction of its width w.r.t. that found in previous works

The final message of this talk

- We have used for the first time femtoscopic data to constraint the parameters of a lowenergy chiral effective QCD Lagrangian
- Particularly, we have focused on the strangeness S = -2 meson-baryon interaction sector using as experimental constraints the $K^-\Lambda$ correlation function recently measured in *pp* collisions by the ALICE Collaboration
- We have then used the interaction model to study the $\Xi(1620)$ & $\Xi(1690)$ states finding:

✓ Masses & widths compatible experimental data

✓ Change of paradigm in the molecular state interpretation of $\Xi(1620)$ which would be a $\overline{K}\Sigma$ – $\eta\Xi$ mixture rather than a $\pi\Xi$ – $\overline{K}\Lambda$ one predicted by previous works

