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This talk in few words

In this work:

= We use for the first time femtoscopic data to constrain the parameters
of a low-energy chiral effective QCD Lagrangian

= Particularly, we focus on the strangeness § = - 2 meson-baryon
interaction sector probed via K~ A correlations recently measured in

pp collisions by the ALICE Collaboration

= We provide new insights on the molecular nature of the =(1620) state

Details can be found in arXiv: 2309.08756




The § = - 2 Meson-Baryon Interaction

The lack of scattering data associated to technical experimental difficulties has not
allowed to fix the meson-baryon interaction in the strangeness sector S = - 2 yet but
the use of femtoscopic data offers an unprecedented opportunity to fix it

= This interaction 1s dominated by the presence of the =Z(1620) & =(1690) resonances
whose nature and properties cannot be accommodated within the quark model
picture, and are still subject to debate

= Similarly to the well known case of the A(1405), whose molecular state nature
arises from the coupled dynamics of the ¥ & KN channels, also the Z(1620) &
=(1690) resonances might be dynamically generated from the interplay of several
channels, thereby acquiring a molecular nature
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Observation of the =(1620) & Z(1690) resonances

= The first observation of the neutral Z°(1620) decaying o7 R
. Py . r— —— L a i
into Z-r* via the Ef » nTn*E~ process was reported ool l ]
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was also reported
M. Sumihama et al., PRL 122, 072501 (2019)



Observation of the =(1690) & Z(1820) resonances

R. Aajj et al., Sci, Bull. 66, 1278 (2021)

" A couple of years later the LHCb collaboration
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distribution obtined from the analysis of the = |
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B. Aubert et al., PRD 78, 034008 (2008)

* Second peak was 1dentified with the =7(1820) resonance
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First experimental observation of the Z(1620) decaying into K~ A pairs
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Unpredecented opportunity to fix the S = - 2 meson-baryon
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The § = - 2 Meson-Baryon Interaction Model

The S = - 2 meson-baryon is described by a chiral effective lagrangian L;If g — Ll‘ + LN Lo

= [eading order (LO)

Lify = i(By,[D¥, B]) — Mo(BB) — = D(By,vs{u®, BY) — = F(By,ys[u¥, B])
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Weinberg-Tomozawa term Direct & Exchange Born terms
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= Next to leading order (NLO) (novelty of this model, A. Fetjoo et al., PLB 841, 137927 (2023))
LN = by (Bt BY) + bp(Blie, B + boBBYX) . o
+ dy(B{uy, [u*, B} ) + d, (B[u,, [u*, B]]) YL
+ d3(Buy, u#B) + dy(BB){utu,) il
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The § = - 2 Meson-Baryon Interaction Model

= Total interaction kernel:  V;; = Vi‘j.'/T T Vi? + Vi? +
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v Weinberg-Tomozawa coefficients are determined by chiral SU(3) symmetry

v' Born coefficients C;%™ are function of D = 0.8, F = 0.46 (constrained by g, = D + F = 1.26)

v" NLO coefficients D;;, L;; are function of the Lagragian parameters

ij
f,bo, bp, br,d4,d,,d5, d, : determined by fitting the K~ A correlation function




The § = - 2 Meson-Baryon Interaction Model

* Unitarized scattering amplitudes (coupled-channel Bethe-Salpeter equation)

on-shell factorization approach

Tij = Vij + VG Ty - Tij = (1 = VyG) ™V

system of algebraic equations

v' meson-baryon propagator

2
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a,;(u) : substraction constants (SCs) replace the - — = q
divergency for the given dimensional regularization woe e = a2
scale p taken to be 1 GeV. Ax—-A = AR
Using isospin symmetry arguments the number of Ag-y0 = Agoy- = ARy
independent SC 1s 4 to be determined aso in the fitting Aooe = (e
procedure of the K~ A correlation function n= n=




Correlation Function of a Multi-Channel System

In the case of a multi-channel system the correlation function of a given observed channel i

(e.g., K~ A) reads
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: w}’md: production weights take into account how many ; pairs, produced Channel j W?md

as initial state, can convert to the measured i final state AK™ 1.000
N}_)rlm Nprlle?rlm = ;8 83?
v' Depend on yields & kinematics: @?™°%=—-L_ =_Ji__Js n=" 1.584% 006
] Nprlm NprlmNprlm 0 0.001
i ia ip K™ 3%  0.68277 001
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v' Particle abundances estimated from Thermal' & Transport? moldels K'Y~ 0.630%5 004
n=~  0.17819:023

I'V. Vovchenko & H. Stoecker, Comp. Phys. Commun. 244, 295 (2019)
2 S. Portebouf et al., arXiv:1006.2987




Correlation Function of a Multi-Channel System

In the case of a multi-channel system the correlation function of a given observed channel i
(e.g., K~ A) reads

2

lpji (k*, r*)

Cl(k*) — z w}?TOd f d3r* S](r*)

J

= §;(r"): emitting source describes the probability of emitting the particle pair j at a relative distance 7.
In general it may be different for different channels

S;(r*) = A (wG]; r*) + (1 — w)gé (r*)) Channeli Ri (fm) R (fm) W As
, AK™, K 1.20279:075 2.33070:032 0.799370 00s7 0.980670 0000
¢ () = 1 oxp (_ r ) (k=12) n=  1.37170:930 3.33870:038 0.741570:9057 0.980670-0015
k - .3 .2 ) - ) —_
VanR’ 4R’ nE-  1.21757050  2.28T5 050 0.86 0.988% 5001

ALICE Collaboration, PLB 845, 138145 (2023)



Correlation Function of a Multi-Channel System

In the case of a multi-channel system the correlation function of a given observed channel i
(e.g., K~ A) reads

Cl(k*) — z w}?‘l"Od f d3r* S](T*) 2

J

qui (k*, r*)

W;i(k",r"): relative wave function describes the scattering from any inital channel j to the final
observed channel i & it can be obtained from the scattering amplitude 7; as

jo (qr™)Tji(Ek™,q)
E-EP (q)-EY (q)+in

Y, (k*,r*) = 8;jo (kK'r*) + [ dq




Fitting the K~ A Correlation Function

The first step of our fitting procedure 1s to remove the background in the experimental data

C(k*)
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Fitting the K~ A Correlation Function

Cyx-p (k™) is then fitted to the experimental data

after removing the background contribution Q= —3.71+0.17
1.4 —— O’AK —202:|:014
_ Ay —1.6940.05

I Cmo e(K*) g —_ _
13 \ * Cexpdﬂl(*)/Cbackground(K*) _ a':'n 393 :l: 0'12
>l - f/fx 1.001 & 0.006
bo [GeV™'] | —1.13+£0.12
_ bp [GeV '] 0.0540.13
< br [GeV™!] 0.30 +0.07
di [GeV~']| —0.18+0.03
dy [GeV~']| —0.26£0.02
ds [GeV~']| —0.71£0.09
ds [GeV™']| —0.44£0.01
Np 1.0024 4 0.0005
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*
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Fitting the K~ A Correlation Function

Restablishing the background contribution we can compare the

fit with the total experimental K~ A correlation function asx —3.71+0.17

S arg —2.02+0.14

S 14f T —1.69 £ 0.05

1-35 ; ﬁli_glﬁfnﬂﬁ. 5-3.1137;e|\r/\15L> 0) az=n —3.93 £0.12
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de [GeV 1 —0.26 £ 0.02

| dz [GeV ™! —0.71 4+ 0.09

f W — da [GeV™']| —0.44+0.01
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C(k™)

C(k™)

Effect of coupled channels in the K~ A Correlation Function

All production weights are set equal to 1 to analyze the coupled

18F T " T T r T T T T
R Ak Small colliding system channel dynamics stemming from the underlying strong
1.6 o+ g interaction
—+ Eono ; ]
14N\ \ @ - +En +En’+ K — .
\ —+ Ezn' +En + ZzK‘ + Z‘KE ] We observe:
a3 — +En +En’+ 3K +ZK +En - L
12 R=1.2fm, R=2.3 fm 7 =  Coupled-channel effects larger for small colliding systems
N O, S, - A where particle pairs are produced at 1 — 2 fm. As source size
N\ increase the K~A correlation function is dominated by the
ot assuming o, = 1 P elastic contribution KA - KA
PR SR [T T TN SR SR [T TR SR ST SR NN SN TN ST S NN S S SN W
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: = Increase of the K~ A correlation function when including the
k* (MeVi/c) st . .
contribution of the ineslastic channels
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16 . ] o
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B —0_- . — 0 O~ 1
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s — + 20+ En+ 3K + 3K +En A . . . . .
1o A a6 3 modification of the correlation function profile in the
- ' . region where the £(1620) and the £(1690) are located
]
: - v" Inclusion of nE~ leads to an enhancement on these
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=Z(1620) & Z(1690) resonances

mass M: 1616.18 MeV 1670.43 MeV
width T': 23.03 MeV 7.17 MeV
Riemann sheet: (———+4+++) (———+++)
)| |gidG/dE|  |gi| |9idG/dE]|
n~=°(1454) 0.50 0.013 0.17 0.0014
n°=" (1456) 0.33 0.006 0.41  0.0079
K~ A(1609) 0.92 0.155 0.06  0.0003
K~ X°(1686) 1.24 0.099 2.30  0.836
K £ (1695) 1.51 0.135 1.32  0.215
nZ=~ (1868) 2.97 0.243 0.16  0.0009

Experimental Z*:
mass M:
width I

=(1620) [1]

2(1690) [2]

1610.4 + 6.0732 MeV 1690 & 10 MeV

59.9 £ 4.8755 MeV

20 &= 15 MeV

[1] M. Sumihama et al., PRL 122, 072501 (2019)

[2] R. L. Workman et al., PTEP 2022, 083C01 (2022)

Close to a pole T~

Both poles found in the physically relevant
Riemann sheet

gidj
ﬁ_zfp,M = Re(z,),T = —2Im(z,)
Masses & Widths compatible with experimental
data (key role of Born & NLO terms)

The strong coupling of Z(1620) to KX, & nZ=
channels reveals a change of paradigm in the
interpretation as a molecular state of this
resonance

v All former works: mE — KA molecule with
non-negligible coupling to the K¥ channel

v' This work: KX — nZ mixture

Z(1690) located ~ 20 MeV below the
experimental value & ~ 16 MeV below the
K~=%9 thresold, reducing the possibility of
decaying to it & leading to a reduction of its
width w.r.t. that found in previous works



The final message of this talk

We have used for the first time femtoscopic data to constraint the parameters of a low-
energy chiral effective QCD Lagrangian

Particularly, we have focused on the strangeness S = - 2 meson-baryon interaction

sector using as experimental constraints the K~ A correlation function recently
measured in pp collisions by the ALICE Collaboration

We have then used the interaction model to study the Z(1620) & Z(1690) states finding:

v" Masses & widths compatible experimental data

v" Change of paradigm in the molecular state interpretation of Z(1620) which would be
a KX — nZ mixture rather than a mZ — KA one predicted by previous works







