

Femtoscopy in heavy-ion collision experiments at various μ_B

Introduction Hanna Zbroszczyk Scanning QCD phase diagram:

• neutron stars

neutron star mergers

• phase transitions

Summary

WPCF 2023, November 6-10, 2023, Catania, Ita

Femtoscopy

... the method to probe geometric and dynamic properties of the source

Classic femtoscopy

2**R**

Femtoscopy (originating from HBT):

the method to probe **geometric** and **dynamic** properties of the source

Space-time properties (10⁻¹⁵m, 10⁻²³s) determined thanks to two-particle correlations:
Quantum Statistics (Fermi-Dirac, Bose-Einstein);
Final State Interactions (Coulomb, strong)

determined assumed measured

$$C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^* = \frac{Sgnl(k^*)}{Bckg(k^*)}$$

 $S(r^*)$ – source function

 $\Psi(k^*, r^*)$ – two-particle wave function (includes e.g. FSI interactions)

 $\frac{Sgnl(k^*)}{Bckg(k^*)}$ – correlation function

Gateway to study interactions

If we assume we know the **source function**, measured **correlations** are used to determine **interactions in the final state**.

Space-time properties $(10^{-15}m, 10^{-23}s)$ determined thanks to two-particle correlations: **Quantum Statistics** (Fermi-Dirac, Bose-Einstein); **Final State Interactions** (Coulomb, strong)

assumed determined measured $C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3 r^* = \frac{Sgnl(k^*)}{Bckg(k^*)}$

 $S(r^*)$ – source function

2**R**

 $\Psi(k^*, r^*)$ - two-particle wave function (includes e.g. FSI interactions) $\frac{Sgnl(k^*)}{Bckg(k^*)}$ - correlation function

https://www.researchgate.net

Scanning various μ_B

.. to study strongly interacting matter

.. to explore unknown QCD territory

Neutron stars

Exploration of unknown QCD territory: high μ_B

Temperature T<10 MeV

Density $n < 10n_0$

Lifetime $t \sim long$

Neutron stars

Exploration of unknown QCD territory: high μ_B

Temperature T<10 MeV

Density $n < 3n_0$

Lifetime $t \sim long$

Neutron star puzzle

- Hyperons: expected in the core of neutron stars; conversion of N into Y energetically favorable.
- Appearance of Y: The relieve of Fermi pressure → softer EoS → mass reduction (incompatible with observation).
- The solution requires a mechanism that could provide the **additional pressure** at high densities needed to make the EoS stiffer.
- A few possible mechanisms, one of them:
- Two-body YN & YY interactions
- A lot of experimental and theoretical effort to understand:
- The KN interaction, governed by the presence of $\Lambda(1405)$
- The nature of $\Lambda(1405)$, the consequences of KNN formation
- **K** and $ar{K}$ investigated to understand kaon condensation

 $M_{\rm NS} \approx 1 \div 2 M_{\odot}$ $R \approx 10-12 \text{ km}$ $\rho \approx 3 \div 5 \rho_0$

YN and YY interactions

• Experiment: More ... and more! interest about YN and YY interactions!

- Theory: Major steps forward have been taken (Lattice QCD).
- Numerous theoretical predictions exist, many experimental searches look for evidence for bound states.
- The existence of **hypernuclei** (confirmed by attractive YN interaction) → indicates the possibility to bind Y to N.
- The measurement of the YN and YY interactions leads to important implications for the possible formation of **YN** or **YY bound states**.
- A precise knowledge of these interactions help to explore unknown structure of neutron stars.

YN interactions at HADES

Narendra Rathod

Physics Image Extraction

Formalism with Lednicky-Lyuboshitz (L-L) approach

 R_G : spherical Gaussian source of pairs f_0 : scattering length d_0 : effective range

Major assumptions:

- Smoothness approximation for source function
- ***** Effective range expansion for $\Psi(\mathbf{r}^*, \mathbf{k}^*)$
- Static and spherical Gaussian source
 - Single particle source: $S_i(x_i, p_i^*)$
 - Pair source (radius R_G): $S(x, p^*) \propto e^{-x^2/2R_G^2} \delta(t t_0)$
- Approximate the wave function by its asymptotic form

$$C(\mathbf{k}^*) \approx 1 + \frac{|f(k)|^2}{2R_G^2} F(d_0) + \frac{2\text{Re}f(k)}{\sqrt{\pi}R_G} F_1(2kR) - \frac{\text{Im}f(k)}{R_G} F_2(2kR_G)$$
$$\frac{1}{f(k)} \approx \frac{1}{f_0} + \frac{d_0k^2}{2} - ik$$
Different f_0 and d_0 for different spin states

Separate spin-states

YN interactions at STAR

Zhi Qin

Light nuclei production at HADES

Maria Stefaniak

Door to study fundamental interactions, additional nucleons: $p \rightarrow d \rightarrow t$ and ${}_{2}^{3}He$ What is the production mechanisms of nuclear fragments / clusters?

- thermal production?
- coalescence?

Proton-proton and proton-deuteron FSI described by potentials: p-p: V.G.J.Stoks et al., Phys.Rev.C 49,2950 (1994) p-d: T.C. Black et al., Phys.Lett.B 471, 103 (1999)

THERMINATOR 2

Thermal models of hadron production have been successful in **describing hadron** yields in various collision processes.

Matter is treated as non-interacting hadron resonance gas.

Ratios of measured particle yields \rightarrow location on the phase diagram.

A few thermodynamic parameters fixed→ hadron yields.

The role of hadronic resonances crucial **at high energies** (~400 states). At **lower energies** their role is **diminished**.

Is the fireball in few-GeV energy regime thermalized? Debate.. The study of hadron yields and spectra is crucial here.

A few-GeV regime still puzzling for the transport models. Instead of determining freeze-out conditions from hydrodynamic / transport one can **model the freeze-out conditions (hypersurface and flow).** Sz. Harabasz, J. Kołaś, HZ, et. al Phys. Rev. C 107, 034917

Jędrzej Kołaś

Light nuclei production at HADES with THERMINATOR 2 model

Jędrzej Kołaś

In the original formulation of the blast-wave model by **Siemens and Rasmussen** (SR) the freeze-out was spherical and the flow was radial.

 \rightarrow Modified for RHIC and LHC (boost-invariance and cylindrical symmetry).

SR model is re-examined in low-energy collision measurements by HADES (boost-invariance is not observed).

Parameter	Case A	Case B	Case C
<i>T</i> (MeV)	49.6	70.3	63.1
<i>R</i> (fm)	15.7	6.06	9.29
μ _B (Mev)	776	876	782
μ_{S} (MeV)	123.4	198.3	145.7
μ_{I_3} (MeV)	-14.1	-21.5	-24.5
γs	0.16	0.05	0.04
$\chi^2/N_{\rm df}$	$N_{\rm df}=0$	1.13/2	62.30/5
H (GeV)	0.01	0.0225	0.016
δ	0.2	0.4	0.4
$\sqrt{Q^2}$	0.238	0.256	0.323

Coalescence

Thermal

Sz. Harabasz, J. Kołaś, HZ, et. al Phys. Rev. C 107, 034917

Light nuclei production at HADES with THERMINATOR 2 model

Case B

 $\delta = 0.4$

x

z

Jędrzej Kołaś

In the original formulation of the blast-wave model by **Siemens and Rasmussen** (SR) the freeze-out was spherical and the flow was radial.

 \rightarrow Modified for RHIC and LHC (boost-invariance and cylindrical symmetry).

SR model is re-examined in low-energy collision measurements by HADES (boost-invariance is not observed).

z

Case A

 $\delta = 0.2$

Light nuclei production at HADES

Light nuclei production at STAR

•First measurement of protondeuteron and deuterondeuteron correlation functions from STAR

• Proton-deuteron and deuterondeuteron correlations qualitatively described by theory;

•Deuteron-deuteron correlations described better by the model including **coalescence**. Light nuclei are likely to be formed via coalescence.

E-M probes at HADES

Mateusz Grunwald

Neutron star mergers

Exploration of unknown QCD territory: still high μ_B

Temperature T<50 MeV

Density $n < 2 - 6n_0$

Reaction time $t \sim 10 \text{ ms}$ (GW170817)

Neutron star mergers CBM and HADES future

Temperature T<50 MeV

Density $n < 2 - 6n_0$

Reaction time $t \sim 10 \text{ ms}$ (GW170817)

Temperature T<10 MeV

Density $n < 10n_0$

Lifetime t ~ infinity

CBM and **HADES** future

NSM and HIC

Top row: simulation of **neutron stars mergers** 2 neutron stars of 1.35 M \odot each, merging into a single object (2R ~ 10 km, $n \simeq 5n_0$, $T \le 20$ MeV). Overlap region: $t \simeq 20$ ms, $n \simeq 2n_0$, $T \simeq 75$ MeV \frown max. temperature

- max. density

Bottom row: non-central-**collision** Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

 $n \simeq 3n_0$, $T \simeq 80 \text{ MeV}$

Similar **densities** and **temperatures** are achieved.

Space and time scales are vastly different
(km - NS, fm - HIC).
The collision events differ
in duration by 20 orders of magnitude.

Phase transitions

Exploration of unknown QCD territory: moderate μ_B

https://www.researchgate.net

Beam Energy Scan at STAR

RHIC energies, species combinations and luminosities (Run-1 to 22)

Beam Energy Scan: Au+Au 3-62.4 GeV
1. Search for turn-off of QGP signatures
2. Search for signals of the first-order phase transition

3. Search for QCD critical point

Fixed-Target Program: Au+Au: 3.0-13.7 GeV

Looking for phase transition

- $> R_{\rm side}$ spatial source evolution in the transverse direction
- R_{out} related to spatial and time components
- R_{out}/R_{side} signature of phase transition
- > R_{out}^2 R_{side}^2 = Δτ² $β_t^2$; Δτ − emission time
- R_{long} temperature of kinetic freeze-out and source lifetime

System evolves faster in the reaction plane

How to measure phase transition?

STAR Data lst order Phase Tr. Cross-over Tr.

vHLLE (3+1)-D viscous hydrodynamics: Iu. Karpenko, P. Huovinen, H. Petersen, M. Bleicher; Phys.Rev. C 91, 064901 (2015), arXiv:1502.01978, 1509.3751

(2011)

26

How to measure a phase transition? CP?

Early Universe

Exploration of $\mu h known$ from lattice QCD: vanishing μ_B

Studies of Early Universe

https://www.researchgate.net

Early Universe

Exploration of $\mu h known$ from lattice QCD: vanishing μ_B

Studies of Early Universe

https://www.researchgate.net

Early Universe, vanishing μ_B

- Probe the condition ~Early Universe,
- Very high abundances of particles produced,
- Statistical heaven to study exotic particles,
- Studies of heavy-flavor,
- Incredible laboratory of anti-matter.

https://insidetheperimeter.ca/the-universe-before-atoms/

A few speakers:

Marcin Kucharczyk - Bose-Einstein correlations at LHCb

Dimitar Mikhaylov - Studying the low-energy scattering among hadrons using correlation techniques at the LHC

Małgorzata Janik - Matter -antimatter interactions

Wioleta Rzęsa - First measurement of properties of strong interaction between (anti-)deuterons and charged kaons in Pb–Pb collisions with ALICE

... and more!

Summary

Collisions of (heavy) ions give us access to:

High T, low µB

- Cross-over to QGP \rightarrow Investigations of properties of QGP
- LQCD: no CP indication for $\mu_B/T < 3$

Lower T, high µB

- Phase structure?
 - first-order phase transition?
 - CP?
 - New phases of QCD?
- Characterization of dense matter,
- EOS?
- Properties of hadrons?

Collisions of (heavy) ions give us access to: High T, low µB

- Cross-over to QGP \rightarrow Investigations of properties of QGP
- LQCD: no CD indication for *u TT* < 3
 your future is BREGE
 Phase str
 first-c
 CP?

Various nuclear densities

A. Sorensen, HZ et al. arXiv:2301.13253 [nucl-th]

 $\epsilon(n_n, n_p) = \epsilon_{SNM}(n) + S(n)\delta^2$ $\epsilon_{SNM}(n)$ - energy per nucleon of symmetric nuclear matter $\delta > 0.8$ - neutron stars **HIC (asym):** < 600 AMeV **HIC (sym):** broad range of energy, including high-energies