Proton-proton correlations in ground-state two-proton radioactivity

Chiara Mazzocchi

Faculty of Physics, University of Warsaw

WPCF 2023 - XVI Workshop on Particle Correlations and Femtoscopy & IV Resonance Workshop 2023

November 8th, 2023

Zakład Fizyki Jądrowej Uniwersytet Warszawski

Physics playground		
00000		

Exotic nuclei

٠

Medium-mass proton drip-line region

- · Nuclear structure at the limits of nuclear stability
- Unique phenomena that result from the interplay between nuclear forces (pairing and Coulomb)

Physics playground				
0000	000	0000	0000000	00

Ground-state two-proton radioactivity

Physics playground		
00000		

Ground-state two-proton radioactivity

Pfützner et al., Prog. Part. Nucl. Phys. 132 (2023)

Physics playground	Prequel 000	Experimental approaches 0000	

Ground-state two-proton radioactivity

Expected for even-Z nuclei beyond the proton drip-line

Pfützner et al., Prog. Part. Nucl. Phys. 132 (2023)

Physics playground	Prequel 000	Experimental approaches 0000	

Two-proton emission

Important messenger on

- masses
- nuclear forces
- structure (?)

beyond the proton drip-line.

It competes with β^+ decay

What is the mechanism?

- sequential or simultaneous?
- di-proton, independent, correlated?

 \rightarrow measurement of the angular distribution of the two protons

p-p correlations in g.s. 2p radioactivity

Physics playground	Prequel	Experimental approaches		
00000	000	0000	000000	00

The beginning of an adventure: discovery of 2p radioactivity (2002)

Implantation into Si-det. array

- \rightarrow good measurement of total energy but protons not resolved!
- \Rightarrow auxiliary detectors needed to prove peak is not β p emission!

M. Pfützner et al., Eur. Phys. J. A14 (2002) 279

J. Giovinazzo et al., Phys. Rev. Lett. 89 (2002) 102501

Physics playground	Prequel	Experimental approaches		
00000	000	0000	0000000	00

The beginning of an adventure: momenta of the 2 protons (2007)

A possible solution: Optical readout Time Projection Chamber (OTPC)

Physics playground	Prequel	Experimental approaches		
00000	000	0000	000000	00

The beginning of an adventure: momenta of the 2 protons (2007)

Time-projection chambers developed to measure the momenta of the 2 protons

University of Warsaw:: "optical" TPC

K. Miernik et al., Phys. Rev. Lett. 99 (2007) 192501

CENBG-Bordeaux:: "classical" TPC (electronic readout)

J. Giovinazzo et al., Phys. Rev. Lett. 99 (2007) 102501

		Experimental approaches		
00000	000	0000	0000000	00

Challenges for experimenters

- exotic nuclei \rightarrow low production rates
- rare decay modes \rightarrow small branching ratios
- high background levels
- physics requirements
 - low-energy particle detection
 - particle correlation measurements

Physics playground	Prequel 000	Experimental approaches 0000	

Experimental solution(s)

Production of the isotopes of interest

- projectile fragmentation + in-flight separation
 - \rightarrow A1900@NSCL, BIGRIPS@RIKEN, FRS@GSI

- ion identification: energy loss (ΔE) vs time-of-flight (ToF) matrices
- implantation of the ions into the Optical Time-Projection Chamber $({\rm OTPC})$

Physics playground	Prequel 000	Experimental approaches	

Optical-readout Time-Projection Chamber (OTPC)

Identified ions implanted in the OTPC

Combination of CCD image and PMT waveform \rightarrow 3D reconstruction of particle tracks

p-p correlations in g.s. 2p radioactivity

WPCF2023&RW 2023

Physics playground	Prequel 000	Experimental approaches	

Two-proton decay experiments

rates from 1 event/2 hours (45 Fe) to 1 event/day (48 Ni)

M. Pomorski et al., Phys. Rev. C 83 (2011) 061303(R)

r nysies playground i reque		Results	ummary and outlook
0000 000	0000	•000000 O	0

p-p momentum correlations in ⁴⁵Fe decay

NSCL: ^{58}Ni @ 161 MeV/u + Ni \rightarrow ^{45}Fe

- 75 events reconstructed
- Proton-proton correlations are complex and indicate a genuine 3-body phenomenon
- good agreement with the 3-body model (Grigorenko et al.)
- correlation picture depends on the initial wave function

Miernik et al., PRL 99 (2007) 192501

Grigorenko et al., Phys. Lett. B 667 (2009) 30

Physics playground	Experimental approaches	Results	
		000000	

p-p momentum correlations in ⁴⁵Fe decay

Result for ⁴⁵Fe: $W(p^2) = 0.3 \pm 0.1$

- All observables are well reproduced by the 3-body model and contradict two-body/diproton-type models
- Detailed shape of the correlation depends on the composition of the initial wave function of the protons

Physics playground	Prequel 000	Experimental approaches 0000	Results 00●0000	

Two-proton decay of ⁴⁸Ni

NSCL: ⁵⁸Ni @ 161 MeV/u + Ni \rightarrow ⁴⁸Ni

- The first direct observation of 2p radioactivity of ⁴⁸Ni
- 10 events in 10 days
- \ldots to be continued @ FRIB \ldots

Physics playground		Experimental approaches	Results	
00000	000	0000	0000000	00

Two-proton decay of ⁴⁸Ni

M. Pomorski et al., Phys. Rev. C 83 (2011) 061303(R)

Physics playground	Prequel 000	Experimental approaches 0000	Results 0000●00	

Two-proton decay of ⁵⁴Zn

Can we see the Z=28 shell closure in the p-p correlations?

Physics playground	Experimental approaches	Results	
		0000000	

Two-proton decay of ⁵⁴Zn

RIKEN: ^{78}Kr @ 350 MeV/u + $^{9}\text{Be} \rightarrow {}^{54}\text{Zn}$

- production cross section: $3.5 \pm 0.8 \pm 0.7$ fb
- 5 events observed
- opening angle reconstructed for 5 events ... to be continued FRIB ...

Physics playground	Prequel 000	Experimental approaches 0000	Results 000000●	

p-p correlations around Z=28

p-p correlations in g.s. 2p radioactivity

Physics playground	Prequel 000	Experimental approaches 0000	Summary and outlook

Summary and outlook

OTPC used in connection with different ion-delivery systems:

- simple and very efficient tool to search for very rare decays and to investigate charged-particle decays obscured by β background
- it can provide precise branching ratios and angular correlations
- low energies can be reconstructed (worse energy resolution than with Si detectors complementarity!)
- 2p correlations measured for ${
 m ^{45}Fe}$ indicate non trivial 3-body character
- correlations needed for $^{\rm 48}\rm Ni$ and $^{\rm 54}\rm Zn$
- can we see the Z=28 shell closure in the 2p decay data?
- experiments approved at FRIB to measure p-p angular correlations in the decay of ⁴⁸Ni and ⁵⁴Zn

thank you!

The OTPC core team

- Wojciech Dominik
- Henryk Czyrkowski
- Zenon Janas
- C.M.
- Marek Pfützner
- PhD Students
 - Krzysztof Miernik
 - Marcin Pomorski
 - Sławomir Mianowski
 - Aleksandra Ciemny
 - Natalia Sokołowska
 - Adam Kubiela

