WPCF Resonance Workshop 2023 cea irfu

Study of Short-Range Correlations (SRC) in exotic nuclei

> Andrea Lagni CEA Saclay andrea.lagni@cea.fr

Physique des 2 Infinis et des Origines

Outline

Introduction

- Short Range Correlations (SRCs);
- Quenching of the Spectroscopic Factors;
- EMC effect;
- How to probe SRCs;

JINR Experimental Program

- Dubna (JINR) test experiment;
- Derivation of observables to isolate SRC physics.

R3B Experimental Program

- Experimental Set-up;
- (p,2p) analysis;
- Derivation of observables to isolate SRC physics.

ONGOING ANALYSIS

FAIR First Physics Program

What are short Range Correlations?

Andrea Lagni

MOMENTUM

INTRODUCTION

INDEPENDENT PARTICLES

 Neutrons and protons move independently in well-defined quantum orbits;

LONG-RANGE CORRELATIONS

 Pairing and particle-vibration coupling;

SHORT-RANGE CORRELATIONS

 High relative momentum and low centre of mass (c.m.) momentum pairs;

NUCLEON

INTRODUCTION

coupling;

INDEPENDENT PARTICLES

 Neutrons and protons move independently in well-defined quantum orbits;

LONG-RANGE CORRELATIONS

- SHORT-RANGE CORRELATIONS
 - High relative momentum and low centre of mass (c.m.) momentum pairs;

Pairing and particle-vibration

5

INTRODUCTION

INDEPENDENT PARTICLES

 Neutrons and protons move independently in well-defined quantum orbits;

LONG-RANGE CORRELATIONS

- SHORT-RANGE CORRELATIONS
 - High relative momentum and low centre of mass (c.m.) momentum pairs;

High relative momentum and low centre of mass (c.m.) momentum pairs;

- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N/Z.

np Dominance

Duer, PRL (2019); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

High relative momentum and low centre of mass (c.m.) momentum pairs;

- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N/Z.

O. Hen et al. (CLAS Collaboration), Science, 346 (6209):614, 2014.

np Dominance

Duer, PRL (2019); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

8

Andrea Lagni

High relative momentum and low centre of mass (c.m.) momentum pairs;

- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N/Z.

O. Hen et al. (CLAS Collaboration), Science, 346 (6209):614, 2014.

np Dominance

Duer, PRL (2019); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

INTRODUCTION

High relative momentum and low centre of mass (c.m.) momentum pairs;

- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N/Z.

O. Hen et al. (CLAS Collaboration), Science, 346 (6209):614, 2014.

np Dominance

Duer, PRL (2019); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

Why study Short Range Correlations?

Why study Short Range Correlations?

Why study Short Range Correlations?

Quenching of the spectroscopic factors

Reduction of measured nucleon removal cross section with respect to the prediction of the mean-field theories

W.H. Dickhoff, C. Barbieri / Progress in Particle and Nuclear Physics 52 (2004) 377-496

- Correlations between nucleons modify the mean-field approximation;
- About 30% 40% of the nucleons participate in NN correlations, which are distinguished into Iong-range (LRC) and short-range (SRC);
- Are thought to be the reason for the quenching of SF observed in (e,e'p), (p,2p) and transfer reactions.
- Depletion of the single particle states below the Fermi momentum.

EMC effect

The European Muon Collaboration (EMC) at CERN observed a **decrease of per-nucleon** electron deep inelastic cross-section in nuclei with A>2 compared to the deuteron.

- Deviation of the per-nucleon DIS cross section ratio of nuclei relative to deuterium from unity.
- Universal shape for 0.3<x<0.7 and 3<A<197.
- No fully accepted theoretical explanation.

INTRODUCTION

EMC effect

L. Frankfurt et al. , Phys.Rev. C48 (1993) 2451 N. Fomin et al., Phys.Rev.Lett 108 (2012) 092502

EMC Data:

J. Gomez et al., Phys.Rev. D. 49, 4348 (1994) J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)

EMC effect

EMC slopes versus the SRC scale factors. The two values are strongly linearly correlated.

O. Hen et al., Phys. Rev. C 85 (2012) 047301.

L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

How we study short Range Correlations?

O PROBING SRC

Direct kinematics

X Fragment ID.

Inverse kinematics

- Pmiss, Emiss, Precoil;
- *I* p_{cm} (directly);
- ✓ Fragment ID;
- Exotic nuclei;
- ✓ Higher cross-section for protons;
- ISI/FSI challenges data

interpretation.

PROBING SRC

Direct kinematics

✓ P_{miss}, E_{miss}, P_{recoil}; X Fragment ID.

Inverse kinematics

- *I* p_{cm} (directly);
- ✓ Fragment ID;
- ✓ Exotic nuclei;
- ✓ Higher cross-section for protons;
- ISI/FSI challenges data

interpretation.

PROBING SRC

Proton scattering experiments

- BM@N (JINR) pilot experiment (2018);
- R^3B (GSI) Experiment (May 2022);
 - Probe SRC in an exotic nucleus for the first time;
- FAIR First Physics Lol.

Motivations R3B Experiment

- Existing trend based on a few points;
- behaviour can depend on shell structure (open/closed shell effects);
- mass and N/Z excess cannot be disentangled with stable nuclei.
- New measurement at N/Z = 1.67 (^{16}C), above the largest available N/Z and at a much smaller mass.

O BM@N Experimental Set-up

Joint Institute for Nuclear Research (JINR), 4 GeV/c/u Carbon beam

JINR Experiment

• Test experiment;

 $^{12}C(p,2pN)$

- Test if SRCs are accessible in proton scattering in inverse kinematics;
- Study sensitivity to ISI/FSI induced distortions;
- Selectivity of the QF mechanism: proton missing mass M_{miss} and missing momentum P_{miss};

- tracking and momentum of the two scattered protons under large laboratory angles with two-arm spectrometer (TAS);
- pair-recoil nucleon (n or p) momentum;
- A-2 fragment momentum.

irfu

Cea

PROBING SRC

Proton scattering experiments

- BM@N (JINR) pilot experiment (2018);
- *R*³*B* (GSI) Experiment (May 2022);
 - Probe SRC in an exotic nucleus for the first time;
- FAIR First Physics LoI.

Ceal irfu Iffu Iffu<

Motivations R3B Experiment

- Existing trend based on a few points;
- behaviour can depend on shell structure (open/closed shell effects);
- mass and N/Z excess cannot be disentangled with stable nuclei.
- New measurement at N/Z = 1.67 (^{16}C), above the largest available N/Z and at a much smaller mass.

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.

26

Fragment analysis: MDF Tracking

Multi-Dimensional Fit (MDF)

- Find an expression to correlate particle hit positions with their momentum;
- The function can then be used to compute the quantity of interest (mass, momentum and angles).

12C Fragments PID

- *¹¹B associated with (p,2p) reaction channel;
 *¹⁰B contains information on np pairs;
- * ${}^{10}Be$ contains information on **pp** pairs;

irfu

Cea

(p,2p) analysis for ${}^{12}C$

Andrea Lagni

28

Quasi-Elastic event identification

Missing energy vs Opening angle

- The ¹¹*B* detection is shown to select the **OE part of the reaction**;
- Similar to BM@N (JINR) experiment.

Quasi-Elastic event identification

Missing mass vs Missing momentum

- The ¹¹*B* detection is shown to select the
 - QE part of the reaction;
- Similar to BM@N (JINR) experiment.
- No selection of ¹¹B fragment;
 (p,2p) reconstructed with FOOT detectors;

 Selection of ¹¹B fragment;
 (p,2p) reconstructed with FOOT detectors;

Quasi-Elastic event identification

Distribution of the cosine of the opening angle between the missing and fragment momentum in the plane transverse to the beam

PRELIMINAR

Hard Break-up of SRC pairs

- Study SRCs by measuring ${}^{12}C(p,2p){}^{10}B$ and ${}^{12}C(p,2p){}^{10}Be$;
- SRC breakup reactions produce ${}^{10}B$ and ${}^{10}Be$ fragments when interacting with a **pn** or a **pp** pair ;
- Fragment selection guarantees exclusion of secondary scattering processes;
- Direct experimental probe for the interaction between the SRC pair nucleons and the residual A-2 nucleons.

PRELIMINAR

What's next?

PROBING SRC

Proton scattering experiments

- BM@N (JINR) pilot experiment (2018);
- R^3B (GSI) Experiment (May 2022);
 - Probe SRC in an exotic nucleus for the first time;
- FAIR First Physics Lol.

Motivations R3B Experiment

- Existing trend based on a few points;
- behaviour can depend on shell structure (open/closed shell effects);
- mass and N/Z excess cannot be disentangled with stable nuclei.
- New measurement at N/Z = 1.67 (^{16}C), above the largest available N/Z and at a much smaller mass.

T.Aumann, M.Duer (TU Darmstadt), J.Benlliure, D.Cortina (University of Santiago de Compostela), <u>A.Corsi</u> (CEA Saclay), O.Hen, <u>J.Kahlbow</u> (MIT), V.Panin (GSI), S.Paschalis, M.Petri (York University), E.Piasetzky (Tel Aviv University),

irfu

Cea

GOAL: probe pair ratios, relative and center of mass momentum, and fragment final state in at and around magic numbers, at different A and N/Z.

- 110,120,132**Sn** @ 1 GeV/u on 5 cm LH2 target;
- ¹³²Sn from ²³⁸U coulex, ^{110,120}Sn from ¹³⁶Xe fragmentation.
- -132Sn: doubly magic, n-rich;
- -**120Sn**: ref. Channel with e scattering (and same N/Z as 48Ca);
- -110Sn: small N/Z.

