TWO-PARTICLE FEMTOSCOPIC CORRELATION MEASUREMENTS

HIN-21-011, ARXIV: 2306.11574, SUBMITTED TO PRC MÁTÉ CSANÁD (EÖTVÖS U) FOR THE CMS COLLABORATION WPCF 2023

SCOTTISH BEER

FEMTOSCOPY IN HIGH ENERGY PHYSICS

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
 - Intensity correlations vs detector distance \Rightarrow source size
 - Measure the sizes of apparently point-like sources!
- Goldhaber et al: applicable in high energy physics
- Understanding: Glauber, Fano, Baym, ...
 Phys. Rev. Lett. 10, 84; Rev. Mod. Phys. 78 1267, ...
 - Momentum correlation C(q) related to particle emitting source S(r)

 $C(q) \cong 1 + \left| \int S(r) e^{iqr} dr \right|^2$ (under some assumptions)

• With distance distribution D(r):

 $C(q)\cong 1+\int D(r)e^{iqr}dr$

 Neglected: pair reconstruction, final state interactions, N-particle correlations, coherence, ...

source function S(r) correlation funct. C(q)

• Only way to map out source space-time geometry on femtometer scale!

Anomalous diffusion Lévy flight

Normal diffusion

SOURCE SHAPE AND CORRELATIONS

- Central limit theorem (diffusion) and thermodynamics lead to Gaussians
- Measurements suggest phenomena beyond Gaussian distribution
- Lévy-stable distribution: $\mathcal{L}(\alpha, R; r) = (2\pi)^{-3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - From generalized central limit theorem, power-law tail $\sim r^{-1-\alpha}$
 - Special cases: $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy

• Shape of the correlation functions with Lévy source:

- $C_2(q) = 1 + \lambda \cdot e^{-|qR|^{\alpha}}$; $\alpha = 2$: Gaussian; $\alpha = 1$: exponential Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67-78
- A possible reason for Levy source: anomalous diffusion, jet fragmentation, critical phenomena, decays, averaging (see backup slide for details)

MEANING OF HBT SCALE R

- No tail if $\alpha = 2$, power law if $\alpha < 2$; tail depends on α $(r^{-1-\alpha})$
- In principle, RMS = ∞ if $\alpha < 2$, in practice finite but depends on cutoff
- Wrong assumption $\rightarrow \alpha$ and R_{Levy} entangle in observed source size
 - See backup slide for details
- Alternative measures:
 - Width at half integral (HWHI) or width at half maximum (HWHM)

MEASURING CORRELATION FUNCTIONS

- $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$ PbPb, 3B MinBias events
 - vtx cut, centrality classes, std single-track cuts
- Pair cuts needed in Δη, Δφ
 to reduce splitting and merging
- Measuring correlation functions via mixed event background: C(q) = A(q)/B(q)

- C(q) for large q may contain remaining effects
 - Energy and momentum conservation, resonances, minijets...
- BG(q) long-range background fit to C(q)
- Double ratio calculated: $DR(q) = \frac{C(q)}{BG(q)}$
- Very small remaining linear background handled in fit
 - ... with a $(1 + \epsilon \cdot q)$ factor

- Approximate spherical symmetry observed by ALICE with Gaussian radii
 - PRC 93 (2016) arXiv:<u>1507.06842</u>, PRL 118 (2017) arXiv:<u>1702.01612</u> (similarly at RHIC)

FITTING CORRELATION FUNCTIONS

- Fit: $N(1 + \varepsilon q) [1 \lambda + \lambda (1 + e^{-|q_R|^{\alpha}}) K_C(q; R, \alpha)]$
 - K_C: Coulomb corr., Phys. Part. Nucl. 51, 238 (2020) [See talk by M. Nagy on this subject]
- R, α, λ : physical parameters of Lévy source, N: normalization; ε : background
 - 6 centrality (0-60%) & 24 K_T (0.5-1.9 GeV/c) bins

SYSTEMATIC UNCERTAINTY SOURCES

Systematic source	Default	Low	High
vertex z selection	<15 cm	<12 cm	<18 cm
$p_{\rm T}$ selection	> 0.5 GeV/c	>0.55 GeV/c	>0.5 GeV/c
$\delta p_{\rm T}$ selection	$<\!10\%$	<5%	<15%
$ \eta $ selection	< 0.95	< 0.9	<1
$N_{\text{pixel-hit}}$ selection	>1	>2	>0
$\frac{N^2}{N_{\rm dof}}/N_{\rm layer}$ selection	< 0.18	< 0.15	< 0.18
$ d_{xy}/\sigma(d_{xy}) $ selection	<3	<2	<5
$ d_z/\sigma(d_z) $ selection	<3	<2	<5
$(\Delta \eta, \Delta \phi)$ pair selection q_{\min} lower fit limit q_{\max} upper fit limit	$\Delta \eta_{\min} = 0.014$ $\Delta \phi_{\min} = 0.022$ $q_{\min}^0(K_{\mathrm{T}}, \operatorname{cent})$ $q_{\max}^0(K_{\mathrm{T}}, \operatorname{cent})$	$\Delta \eta_{\min} = 0.017$ $\Delta \phi_{\min} = 0.028$ $q_{\min}^0 - 0.004$ $0.85q_{\max}^0$	$\Delta \eta_{\min} = 0.011$ $\Delta \phi_{\min} = 0.016$ $q_{\min}^{0} + 0.004$ $1.15q_{\max}^{0}$
centrality edges	Default values	Lower values	Higher values

- Event and track cuts: 2-4%, pair cuts: 4-6%, fit range: 2-9% \rightarrow largest effect
- Largest uncertainties for central collisions and for λ parameter
- Separation of point-to-point (fluctuating) and constant part (overall factor)

LÉVY STABILITY INDEX α

- Source shape not Gaussian ($\alpha \neq 2$)
- Close to constant in each centrality class, average value: 1.6-2.0
- Lévy α larger in central collisions (unlike at RHIC, see talk by D. Kincses)

THE LÉVY SCALE PARAMETER: R VS m_T

- Pair transverse mass: $m_T = \sqrt{m^2 + (K_T/c)^2}$
- Source homogeneity length R: smooth m_T dependence
 - Usual decrease with m_T , as predicted by hydro for transverse flow
- PbPb 0.607 nb⁻¹ (5.02 TeV) CMS Centrality R [fm] Centrality arXiv:2306.11574 dependence: 8 $h^{-}h^{-}$ $h^+ h^+$ +0-5% +5-10% Decrease Correlated syst. = $\frac{+2.0\%}{-2.4\%}$ +10-20% +20-30% for peripheral +30-40% +40-60% collisions Compatible with hydro? 1.2 1.4 1.6 1.8 0.6 0.8 0.6 0.8 12 1.6 m_{τ} [GeV/c²] m_{τ} [GeV/c²]

GEOMETRICAL SCALING: RVS N_{part}

- $\langle N_{\text{part}} \rangle$: average number of participating nucleons in the collision
- $\langle N_{\rm part} \rangle^{1/3} \sim$ initial one-dimensional size
- If $R \sim \langle N_{\text{part}} \rangle^{1/3}$: *R* connected to $\begin{bmatrix} R \\ -m_{\text{T}} \ [\text{GeV/c}^2] \\ -0.59 \\ -0.74 \end{bmatrix}$ PbPb 0.607 nb⁻¹ (5.02 TeV) Correlated syst. = $\frac{+2.0\%}{-2.4\%}$ h⁺ h⁺ $h^{-} h^{-}$ Fitted function: initial geometry **★**0.89 **★**1.03 $R = aN_{part}^{1/3} + b$ -1.18 +1.33 Linear scaling +1.48 +1.76 $R = a \cdot \left\langle N_{\text{part}} \right\rangle^{\frac{1}{3}} + b$ verified • Slope and intercept: arXiv:2306. 4.5 5 5.5 6 6.5 7 4 4.5 5 5.5 $\langle N \rangle^{1/3}$ 6 6.5 related to expansion

CORRELATION STRENGTH λ

- λ may be influenced (at least) by:
 - Core fraction (f_c) and partial coherence (p_c) : increase with f_c , decrease with p_c $\lambda = f_c^2[(1 - p_c)^2 + 2p_c(1 - p_c)]$ (see e.g., Csörgő, hep-ph/0001233)
 - Lack of particle identification: $\lambda \leq (N_{\pi}/N_{hadron})^2$
- Strongly decreasing trend with m_T : caused by lack of PID?

RESCALED CORRELATION STRENGTH: λ^*

- Proton and kaon to pion ratio increases with m_T
 - See for example ALICE result Phys.Rev.C 101 (2020) 4,044907
 - Can rescale with it: $\lambda^* = \lambda \cdot (N_{hadron}/N_{\pi})^2$
- Close to constant trend vs m_T
- PbPb 0.607 nb⁻¹ (5.02 TeV) RHIC observes Centrality arXiv:2306.11 $U_A(1)$ restoration $h^- h^$ $h^+ h^+$ 1.4 + 0.5% + 5.10%at $m_T \lesssim 300 \text{ MeV/c}^2$ +10-20% +20-30% Correlated syst. = +5.7%[PRC 97 (2018) 064911], +30-40% +40-60% not resolvable here 0.8 Centrality dependence: more coherence 0.4 in central collisions? 0.6 0.8 1.4 1.6 1.8 1.2 1.6 1.8 1.4 m_{T} [GeV/c²] m_{T} [GeV/c²]
- Test with 3-particle correlations!

- Decrease from LHC to RHIC, again increase towards SPS (Ar+Sc)
- Different values for small (Be+Be) & medium (Ar+Sc) systems at SPS
 - Also true for Pb+Pb and p+p at LHC? ($\alpha = 1$ assumed so far in p+p at LHC)

EPOS3 single event

10-20% Pb+Pb@√s_{NN} = 2.76 TeV

ππ, |η|<1, k = 0.50-0.58 GeV/c

O D(r_{LCMS})

CORE

primordial+decay pions

 $\alpha = 1.48 \pm 0.01$

- Levy distr. $(\alpha, 2^{1/\alpha} R; r_{LCMS})$

--- Gaussian distr.(R_c;r_{LCMS})

COMPARING TO MODEL RESULTS

• Pion and kaon pair distributions calculated in individual EPOS events

$$D(r_{LCMS}) = \int d\Omega dt D(t, r_x, r_y, r_z)$$

10

_^{10⁻} □ 10⁻

10⁻

10

CORE

primordial pions

 $\alpha = 1.81 \pm 0.02$

- Lévy source parameters determined for each event separately
 - Fit limits: from 2-5 fm to 70-100 fm
 - Criterion: confidence level > 0.1%
 - Strongly non-Gaussian shapes observed
- In various centrality and k_T classes,

LÉVY SOURCE PARAMETERS IN EPOS

Nov 9, 2023

Phys. Lett. B (2023), arXiv:2212.02980

 $Pb+Pb@\sqrt{s_{NN}} = 2.76 \text{ TeV}$

 $\pi\pi$, $|\eta| < 1$

- Lévy scale parameter (R):
 - Behavior similar as in data (m_T and centrality dependence); but larger!
- Lévy stability index (α):
 - Behavior different than in data (no centrality dependence here); but smaller!

[fm]

- Bands: variance of R, α in fits (\neq uncertainty)
- Particle type dependence:
 - Anomalous diffusion: $\alpha_K < \alpha_\pi < \alpha_p$

14-EPOS3 CORE+CORONA+UrQMD

CONCLUSIONS

- Lévy sources appear in $\sqrt{s_{NN}} = 5.02$ PbPb collisions at LHC
 - Importance: entanglement of α and R masks energy, momentum, centrality dependence •
- Lévy α : between 1.6 and 2
 - Larger in central collisions: larger density, less anomalous diffusion? •
- Lévy R: hydro scaling versus m_T , despite not Gaussian source
- Possible reason: Lévy flight \rightarrow checked with EPOS, Lévy in single events

THANK YOU FOR YOUR ATTENTION

... and if you are interested in these subjects: https://zimanyischool.kfki.hu/

ZIMÁNYI SCHOOL 2023

December 4-8, 2023

Budapest, Hungary

A. Gáspár: Calculate the Entropy XIV

József Zimányi (1931 - 2006)