First measurement of properties of strong interaction between (anti-)deuterons and charged kaons in Pb–Pb collisions with ALICE

Wioleta Rzęsa (Warsaw University of Technology) on behalf of the ALICE Collaboration

ALICE

Motivation

The effective interaction between hadrons with different quark contents is still an open topic in nuclear physics. Since the low-energy processes of QCD cannot be described

with perturbation theory, experimental data are essential to constrain the currently available effective theories.

Picture of strong interaction

$K^{\pm}d$ strong interaction

K[±]d scattering parameters
■ very poorly known theoretically,
■ never measured before.

Picture of strong interaction

< □ > < □ > < □ > < □ >

$K^{\pm}d$ strong interaction

K[±]d scattering parameters:■ very poorly known theoretically,■ never measured before.

The K^-d study can enable the full isospin dependence of the interaction to be determined for the first time, which is a fundamental problem in the strangeness sector in the low-energy regime of QCD.

A measurement of K⁻d strong interaction parameters is awaited for more than 40 years!

Picture of strong interaction

Experimental techniques that can be used to access hadron–hadron interaction

Scattering experiments

Scattering cross sections.

1 16 7		Ko 1	(a)	60	500
 -				~	
	<u> </u>		9	<u> </u>	-

ALICE/WUT

Experimental techniques that can be used to access hadron–hadron interaction

Scattering experiments

Kaonic atoms

Scattering cross sections.

SIDDHARTA-2 experiment

created for K⁻d measurements. **Ongoing.**

Experimental techniques that can be used to access hadron-hadron interaction

Methodology

Femtoscopy is a technique to study the space-time characteristics of the particle-emitting source using correlation function (CF) in momentum space.

CF is a convolution of the source function and wave function (the latter for non-identical particles combines strong and/or Coulomb forces).

A magic power of femtoscopy

Model

$$C(k^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3 r^* = \xi(k^*) \cdot \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

We can compare experimental correlation functions with available models and conclude about their parameterisation, i.e.: source and/or interaction parameters.

Experiment

Data

- Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
- $\blacksquare K^{\pm}d/K^{\pm}\overline{d} \text{ correlation functions.}$
- 3 centrality intervals: 0–10%, 10–30%, 30–50%.
- Momentum reconstruction via TPC detector.
- Particle identification via TPC, TOF detectors.

< ロト < 同ト < ヨト < ヨト

 $C(k^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^*$

イロト 不得下 イヨト イヨト 二日

 $C(k^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^*$

- What shape is it?
- What size?
- (Anti-)deuterons' production mechanism?

 $C(k^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^*$

- What shape is it?
- What size?
- (Anti-)deuterons' production mechanism?

- How to calculate $\Psi(k^*, r^*)$?
- \blacksquare f_0 scattering length?
- **d**₀ effective range?

ALICE/WUT

Theoretical CFs modeled with Lednický-Lyuboshitz approach [1] with the assumptions:

 \Box gaussian source,

 \Box zero effective-range approximation of the interaction, $d_0 = 0.0$ fm.

Examples of modeled CFs for different values of

■ Numerical calculation of theoretical CFs for different fit parameters.

WPCF 2023

Kd in Pb–Pb with L-L fit

Simultaneous fit to 6 CFs.

- Source radii from like- and unlike-sign pairs:
 one R_{Kd} per centrality.
 Scattering lengths from
- Scattering lengths from three centralites:
 - $\label{eq:f0} \Box \mbox{ one } f_0(\mathfrak{N},\mathfrak{J}) \mbox{ for unlike-sign pairs,}$
 - $\label{eq:f0} \Box \mbox{ one } f_0(\mathfrak{N}) \mbox{ for like-sign } \\ \mbox{ pairs.}$

Kd radii

K^-d scattering length

■ ℜf₀ and ℑf₀ are in agreement with most of the available calculations.

K^+d scattering length

ALICE/WUT

November 8, 2023

13/15

< ロト < 同ト < ヨト < ヨト

Summary

- \blacksquare First measurement of Kd correlation functions and 1D radii in heavy-ion collisions.
- **•** First measurements of K^-d and K^+d scattering lengths:
 - ⇒ In agreement (within uncertainties) with many K^-d predictions and with the two currently available K^+d calculations.
 - \Rightarrow Obtained values play a crucial role in constraining the scattering parameters for future theoretical studies.

Thank you for your attention!

