Deuteron-Xi correlation function studied with three-body model

Tokuro Fukui Kyushu University, Japan

10/Nov./2023

Collaborators Mourning for Akira Ohnishi

Deceased 1964-2023

Target | Three-body correlation function

Target | Three-body correlation function

3NF Few- and many-body systems

3NF Few- and many-body systems

Witała +, PRC 105, 054004 (2022)

Navrátil, FBS 41, 117 (2007)

3NF Few- and many-body systems

$3NF \rightarrow 3BF$ | Nuclear matter and neutron star

3NF necessary for saturation

3-baryon force (ΛNN) necessary for 2-solar mass

Femtoscopy and 3-body correlation function

Correlation function | Tool to access strong interaction

Koonin-Pratt formula

Koonin, PRB 70, 43 (1977), Pratt, PRD 33, 1314 (1986)

$$C(\boldsymbol{q}) \approx \int d\boldsymbol{r} S(\boldsymbol{r}) \left| \psi^{(-)}(\boldsymbol{q}, \boldsymbol{r}) \right|^2$$

Source function → Collision detail

Relative wave function

→ Interaction

Three-body CFs Cf. Talk by O. Vázquez Doce

ALICE data

 $C(Q_3)$

30E

25E

20E

15-

10È

5ŀ 05

ALI-PREL-487066

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Q_{2} (GeV/c)

alice-figure.web.cern.ch/node/19641 agenda.infn.it/event/33324/contributions/214457/ $C(Q_3)$ ALICE Preliminary ALICE Preliminary pp $\sqrt{s} = 13 \text{ TeV}$ pp $\sqrt{s} = 13 \text{ TeV}$ High Mult. (0-0.17% INEL) High Mult. (0-0.17% INEL) p-p-A Projected p-p-p Projected 3 $p - p - \Lambda \oplus \overline{p} - \overline{p} - \overline{\Lambda}$ Data p-p-p⊕p_p_p Data 2

0.1

0.2

0.3

0.4

0.5

0.7

p-p-p⊕p-p-p Data

 Q_3 (GeV/c)

0.6

0.8

0.8

Three-body CFs Direct production or by final-state int.

Cf. talk of S. Mrówczyński

agenda.infn.it/event/33324/contributions/212739/

Cf. Mrówczyński & Słoń, APPB 51, 1739 (2020)

Three-body CFs | Deuteron + Ξ system

Three-body CFs | Deuteron + Ξ system

Clarify the coupled channel effect (deuteron dynamical excitation) on *d*-Xi CF Observed channel i = 0

3BF in 3BCF: Future

Three-body CFs | Deuteron + Ξ system

Clarify the coupled channel effect (deuteron dynamical excitation) on *d*-Xi CF

3BF in 3BCF: Future

* 3B scatt. wave w/ incoming BC

$$\Psi^{(-)}(\boldsymbol{r},\boldsymbol{R}) = \sum_{i} \phi_{i}(\boldsymbol{r})\psi_{i0}^{(-)}(\boldsymbol{R})$$

$$NN \text{ w.f. (NN)-} \Xi \text{ w.f.}$$

$$C(\boldsymbol{q}) \approx \sum_{i} \int d\boldsymbol{R} S_{i}(\boldsymbol{R}) \left| \psi_{i0}^{(-)}(\boldsymbol{R}) \right|^{2}$$

Continuum discretized coupled channels (CDCC)

Deuteron discretized continuum states

Continuum discretized coupled channels (CDCC)

Deuteron discretized continuum states

i = 2

Numerical detail

Spin-isospin dependent interactions

Ogata +, PRC 103, 065205 (2021)

Discretized states

Limitations

- \Rightarrow Single-ch. 2-body source func. (Gaussian)
- Coulomb int. in all isospin channels
- * Isospin symmetry for baryon masses
- No rearrangement channels

Ogata +, PRC 103, 065205 (2021)

Source size: 1.2 fm

Ogata +, PRC 103, 065205 (2021)

Source size: 1.2 fm

Coupled channel effect | Additional attractive role

NN-\Xi distorted wave (q = 60 MeV/c**)**

Coupled channel effect Back coupling & *nn* continua

pn

nn

pn

Coupled channel effect Back coupling & *nn* continua

Ogata +, PRC 103, 065205 (2021)

