

Exploring new Technologies for the Cooling Cell of the Muon Collider

Thesis supervisor : Prof. Lucio Rossi (lucio.rossi@unimi.it)

Professor of Accelerator Physics at University of Milano National Coordinator of th Committee for Science & Technology of Accelerators (formerly head of the LHC Superconducting Magnets 2000-2011 at CERN and High Luminosity LHC Project Leader 2010-2020 at CERN)

Place of thesis work: Milano at the LASA Laboratory of University and INFN

11 Nov 2022

L. Rossi @ phD Acc Physics - La Sapienza

The Muon Collider is the raising hope for a energy-frontier collider: it can deliver **both high energy and high precision**

It si fully driven by muon lifetime: 2.2 µs at rest!!! And by the necessity to cool it quickly and efficienty!

Fast and efficient cooling of the Muons is necessary in order to pass from a "cloud of particles" to a cold beam. The cooling Cell is maybe the most critical element of the accelerator: no cooling, no muons to collide... The coling is obtained by absorbing energy in all direction and giving back energy inone direction: Efficient eabsorber; large acceptance RF Cavity; Strong, **very large acceptance Supercond. Magnets for focusing**

L. Rossi @ phD Acc Physics - La Sapienza

Magnet zoo for the Cooling cell ... Unique challenge: Magnets and RF cavity must overlap (very unusual)

- ← Proto of small high field SC solenoid in HTS (USA)
- ← Exploring non-insulated technology has never bene done on such scale.
- Possibility to learn on subscale coils, development of multiphysics modelling: Electromagnetic, thermomechanical, optical and integration

PhD Thesis work: Design of very high fields (3- 30 tesla!!) Solenoids Exploring brand new technologies: Non-Insulated coil with HTS (high temperature superconductor) Construction of a prototype for 3-5 T an then design of a proto of 20+ T Experimental test of a solenoid (3-5 T) couple with 650 or 1300 MHz Cavity.

Study of the best optical configuration for maximum performance.

Design of prototype Full Cell, solving integration issues, for the CCC (CERN Cooling Cell) demonstrator

1**20**0**70**022