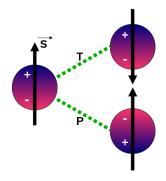
8th International Conference on Nuclear Physics in Storage Rings

STORI'11

"Synchrotron Oscillation Effects on Observation of an RF-solenoid Spin Resonance for a Polarized Deuteron Beam at COSY"

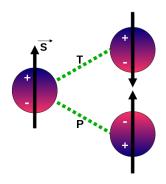

Greta Guidoboni University of Ferrara and INFN Ferrara Italy

Laboratori Nazionali di Frascati

October 11, 2011

Introduction

- EDM is a permanent charge separation within the particle volume.
- EDM must lie along the spin axis
- EDM violates both P and T

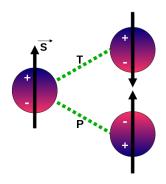

Under CPT theorem

CP VIOLATION \rightarrow **Baryon Asymmetry**

- Standard Model is not enough to explain the BA
- SM predicts a non vanishing EDM but unobservably small

 $ert d_{e}ert_{SM} < 10^{-38} e \cdot cm ert_{d_n}ert_{SM} < 10^{-32} e \cdot cm ert$

- EDM is a permanent charge separation within the particle volume.
- EDM must lie along the spin axis
- EDM violates both P and T

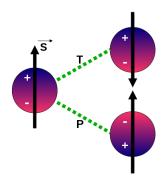

Under CPT theorem

$\textbf{CP VIOLATION} \rightarrow \textbf{Baryon Asymmetry}$

- Standard Model is not enough to explain the BA
- SM predicts a non vanishing EDM but unobservably small

 $|d_e|_{SM} < 10^{-38} e \cdot cm$ $|d_n|_{SM} < 10^{-32} e \cdot cm$

- EDM is a permanent charge separation within the particle volume.
- EDM must lie along the spin axis
- EDM violates both P and T


Under CPT theorem

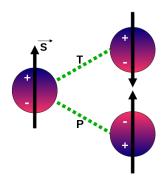
$\textbf{CP VIOLATION} \rightarrow \textbf{Baryon Asymmetry}$

- Standard Model is not enough to explain the BA
- SM predicts a non vanishing EDM but unobservably small

 $|d_e|_{SM} < 10 \quad e \cdot cm$ $|d_n|_{SM} < 10^{-32} e \cdot cm$

- EDM is a permanent charge separation within the particle volume.
- EDM must lie along the spin axis
- EDM violates both P and T

Under CPT theorem

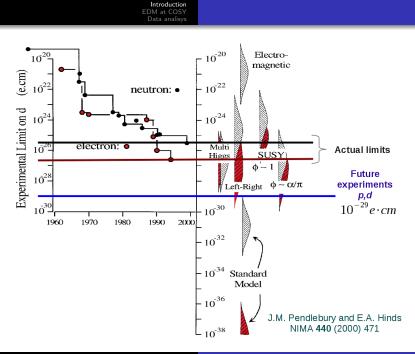

$\textbf{CP VIOLATION} \rightarrow \textbf{Baryon Asymmetry}$

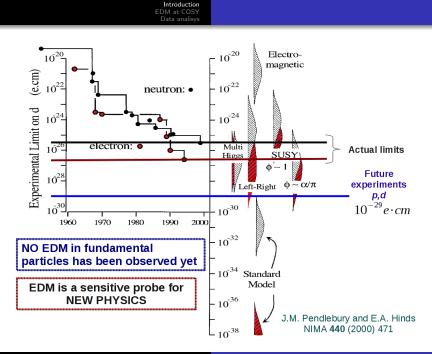
- Standard Model is not enough to explain the BA
- SM predicts a non vanishing EDM but unobservably small

 $|d_e|_{SM} < 10^{-38} e \cdot cm$ $|d_n|_{SM} < 10^{-32} e \cdot cm$

Introduction

- EDM is a permanent charge separation within the particle volume.
- EDM must lie along the spin axis
- EDM violates both P and T

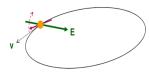



Under CPT theorem

$\textbf{CP VIOLATION} \rightarrow \textbf{Baryon Asymmetry}$

- Standard Model is not enough to explain the BA
- SM predicts a non vanishing EDM but unobservably small

 $|d_e|_{SM} < 10^{-38} e \cdot cm$ $|d_n|_{SM} < 10^{-32} e \cdot cm$



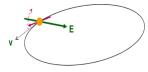
How to measure EDM for charged particles?

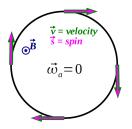
• $\left| \frac{d\vec{s}}{dt} = \vec{d} \times \vec{E} \right|$ EDM signal=spin precession

charge particle would be lost in \vec{E} !

Storage ring is the solution for charge particles! → Injection with spin aligned along the velocity and radial *F* field

How to measure EDM for charged particles?


charge particle would be lost in \vec{E} !


Storage ring is the solution for charge particles! \rightarrow Injection with spin aligned along the velocity and radial \vec{E} field

Skeep spin aligned with velocity. →Frozen spin technique

$$\vec{\omega_a} = \vec{\omega}_s - \vec{\omega}_c = -\frac{q}{m} \left\{ a\vec{B} + \left[a - \left(\frac{m}{p}\right)^2 \right] \frac{\vec{\beta} \times \vec{E}}{c} \right\} = 0$$

$$\begin{split} &\omega_s \text{ Spin precession in the horizontal plane} \\ &\omega_c \text{ Particle angular frequency} \\ &a = \frac{g-2}{2} \text{ anomalus moment} \end{split}$$

How to measure EDM for charged particles?

charge particle would be lost in \vec{E} !

Storage ring is the solution for charge particles! \rightarrow Injection with spin aligned along the velocity and radial \vec{E} field

Skeep spin aligned with velocity. →Frozen spin technique

$$\vec{\omega_a} = \vec{\omega}_s - \vec{\omega}_c = -\frac{q}{m} \left\{ a\vec{B} + \left[a - \left(\frac{m}{p}\right)^2 \right] \frac{\vec{\beta} \times \vec{E}}{c} \right\} = 0$$

 ω_s Spin precession in the horizontal plane ω_c Particle angular frequency $a = \frac{g-2}{2}$ anomalus moment

Different solutions for proton and deuteron

 $\vec{v} = velocity$

 $\vec{\omega}_{a}=0$

How to measure EDM for charged particles in a storage ring?

Frozen spin techinque

$$\vec{\omega}_a = -\frac{q}{m} \left\{ a\vec{B} + \left[a - \left(\frac{m}{p}\right)^2 \right] \vec{\beta} x\vec{E} \right\} = 0, \qquad a = \frac{g-2}{2}$$

Proton solution

- a=1.79
- magic momentum $p = \frac{m}{\sqrt{a}} = 0.7 \, GeV/c$ $\Rightarrow \left[a - \left(\frac{m}{p}\right)^2\right] = 0$ • pure electric ring $\vec{B} = 0$

How to measure EDM for charged particles in a storage ring?

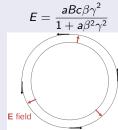
Frozen spin techinque

$$\vec{\omega}_a = -\frac{q}{m} \left\{ a\vec{B} + \left[a - \left(\frac{m}{p}\right)^2 \right] \vec{\beta} x\vec{E} \right\} = 0, \qquad a = \frac{g-2}{2}$$

Proton solution

• a=1.79

• magic momentum

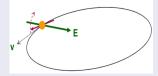

$$p = \frac{m}{\sqrt{a}} = 0.7 \, GeV/c$$

$$\Rightarrow \left[a - \left(\frac{m}{p}\right)^2 \right] = 0$$
• pure electric ring

$$\vec{B} = 0$$

Deuteron solution

- a=-0.14 $\Rightarrow \nexists$ magic momentum
- \vec{B} with outward \vec{E}



How to measure EDM for charged particles in a storage ring?

Spin Coherence time?

• Minimal detectable precession $\theta \approx 10^{-6} rad$

 $\begin{array}{l} (\text{vertical polarization measurement} \\ \rightarrow \text{ see next slides}) \end{array}$

• Assuming $d \approx 10^{-29} e \cdot cm$ and E = 17 MV/m

- 10^9 turns needed to detect θ_{EDM}
- spin coherence time t > 1000s
- $10^{-29}e \cdot cm$ precision $\rightarrow 1$ year of data taking.

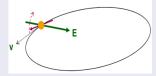
How to measure EDM for charged particles in a storage ring?

Spin Coherence time?

• Minimal detectable precession $\theta \approx 10^{-6} rad$

 $\begin{array}{l} (\text{vertical polarization measurement} \\ \rightarrow \text{ see next slides}) \end{array}$

• Assuming $d \approx 10^{-29} e \cdot cm$ and E = 17 MV/m


- 10^9 turns needed to detect θ_{EDM}
- spin coherence time t > 1000s
- $10^{-29}e \cdot cm$ precision $\rightarrow 1$ year of data taking.

How to measure EDM for charged particles in a storage ring?

Spin Coherence time?

• Minimal detectable precession $\theta \approx 10^{-6} rad$

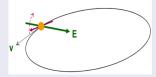
 $\begin{array}{l} (\text{vertical polarization measurement} \\ \rightarrow \text{ see next slides}) \end{array}$

• Assuming $d \approx 10^{-29} e \cdot cm$ and E = 17 MV/m

$$\begin{array}{l} \theta_{\textit{EDM}}(t) = \frac{2dE}{\hbar}t = 5\left(\frac{10^{-9}\textit{rad}}{s}\right)t \\ 1 \quad \textit{turn} \approx 10^{-6}s \end{array} \right\} \Rightarrow \theta_{\textit{EDM}} \approx \frac{10^{-15}\textit{rad}}{\textit{turn}}$$

• 10^9 turns needed to detect θ_{EDM}

• spin coherence time t > 1000s


• $10^{-29}e \cdot cm$ precision $\rightarrow 1$ year of data taking.

How to measure EDM for charged particles in a storage ring?

Spin Coherence time?

• Minimal detectable precession $\theta \approx 10^{-6}$ rad

 $\begin{array}{l} (\text{vertical polarization measurement} \\ \rightarrow \text{ see next slides}) \end{array}$

• Assuming $d \approx 10^{-29} e \cdot cm$ and E = 17 MV/m

$$\begin{array}{l} \theta_{EDM}(t) = \frac{2dE}{\hbar}t = 5\left(\frac{10^{-9} \text{rad}}{s}\right)t \\ 1 \quad turn \approx 10^{-6}s \end{array} \right\} \Rightarrow \theta_{EDM} \approx \frac{10^{-15} \text{rad}}{turn}$$

- 10^9 turns needed to detect θ_{EDM}
- spin coherence time t > 1000s
- $10^{-29}e \cdot cm$ precision $\rightarrow 1$ year of data taking.

How to measure EDM for charged particles in a storage ring?

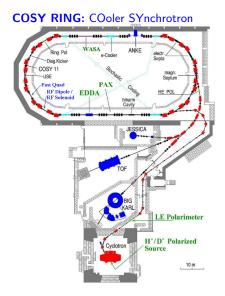
Spin Coherence time?

• Minimal detectable precession $\theta \approx 10^{-6}$ rad

 $\begin{array}{l} (\text{vertical polarization measurement} \\ \rightarrow \text{ see next slides}) \end{array}$

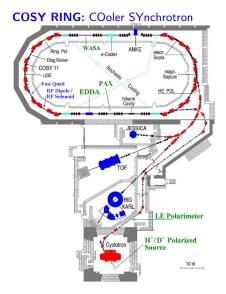
• Assuming $d \approx 10^{-29} e \cdot cm$ and E = 17 MV/m

$$\begin{array}{l} \theta_{EDM}(t) = \frac{2dE}{\hbar}t = 5\left(\frac{10^{-9} \text{rad}}{s}\right)t \\ 1 \quad turn \approx 10^{-6}s \end{array} \right\} \Rightarrow \theta_{EDM} \approx \frac{10^{-15} \text{rad}}{turn}$$


- 10^9 turns needed to detect θ_{EDM}
- spin coherence time t > 1000s
- $10^{-29}e \cdot cm$ precision $\rightarrow 1$ year of data taking.

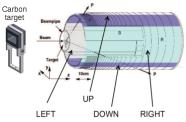
Experimental setup at COSY

COSY RING: COoler SYnchrotron

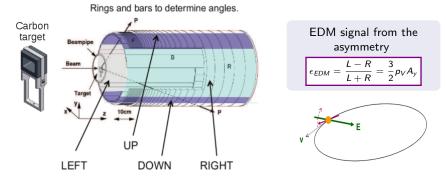

Experimental setup at COSY

RF Solenoid: spin flipper

Experimental setup at COSY

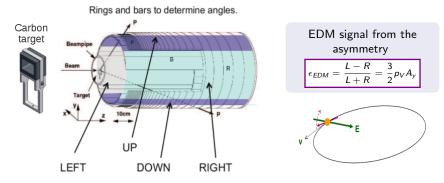


RF Solenoid: spin flipper



EDDA detector: continuous polarimeter

Rings and bars to determine angles.



EDDA detector

- \bullet beam moves toward thick target \rightarrow continuous extraction
- EDDA scintillators stop elastic deuterons from the target
- elastic scattering \rightarrow spin sensitive process (large cross section for d-C)

EDDA detector

- \bullet beam moves toward thick target \rightarrow continuous extraction
- EDDA scintillators stop elastic deuterons from the target
- elastic scattering \rightarrow spin sensitive process (large cross section for d-C)

Polarization measurements at COSY

Original aim

Study of momentum spread $\frac{\Delta p}{p}$ and emittance effects on the spin coherence time of a deuteron beam.

But...

Synchrotron oscillation effects dominated our measurments! The rest of this talk is about synchrotron oscillations.

Experimental conditions

- RF-solenoid spin resonance.
- Continuous record of vertical polarization (EDDA detector).

	m $p = 0.97 GeV/c$
	$\gamma = 1.12583$
	$f_{cyc} = 750602.5 \pm 0.5 Hz$
	beam (h=1) and uncooled
cooled a	and uncooled

Polarization measurements at COSY

Original aim

Study of momentum spread $\frac{\Delta p}{\Delta p}$ and emittance effects on the spin coherence time of a deuteron beam.

But...

Synchrotron oscillation effects dominated our measurments! The rest of this talk is about synchrotron oscillations.

- RF-solenoid spin resonance.

beam (h=1) nd uncooled
$f_{cyc} = 750602.5 \pm 0.5 Hz$
$\gamma=1.12583$
p = 0.97 GeV/c

Polarization measurements at COSY

Original aim

Study of momentum spread $\frac{\Delta p}{p}$ and emittance effects on the spin coherence time of a deuteron beam.

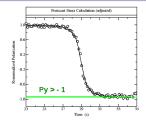
But...

Synchrotron oscillation effects dominated our measurments! The rest of this talk is about synchrotron oscillations.

Experimental conditions

- RF-solenoid spin resonance.
- Continuous record of vertical polarization (EDDA detector).

Deuteron beam momentum	p=0.97 GeV/c	
Relativistic factor	$\gamma = 1.12583$	
Cyclotron frequency	$f_{cyc} = 750602.5 \pm 0.5 Hz$	
Bunched beam (h=1) cooled and uncooled		
G. Guidoboni	Synchrotron Oscillation Effects	


Polarization measurements at COSY

Froissart-Stora frequency scan

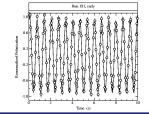
Identification of the spin resonance frequency.

- $f_{res} = f_{cyc}(1 G\gamma) > f_{cyc}$
- $\Delta f = 400$ Hz, linear ramping in 40s

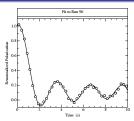
Uncooled

Polarization measurements at COSY

Froissart-Stora frequency scan


Identification of the spin resonance frequency.

- $f_{res} = f_{cyc}(1 G\gamma) > f_{cyc}$
- $\Delta f = 400$ Hz, linear ramping in 40s


Fixed frequency measurements

Study of the spin resonance and solenoid strength effect.

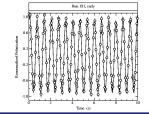
Cooled

Uncooled

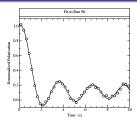
Polarization measurements at COSY

Froissart-Stora frequency scan

Identification of the spin resonance frequency.


- $f_{res} = f_{cyc}(1 G\gamma) > f_{cyc}$
- $\Delta f = 400$ Hz, linear ramping in 40s

Fixed frequency measurements


Study of the spin resonance and solenoid strength effect.

Cooled

Uncooled

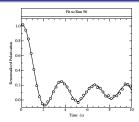
Polarization measurements at COSY

Froissart-Stora frequency scan

Identification of the spin resonance frequency.

- $f_{res} = f_{cyc}(1 G\gamma) > f_{cyc}$
- $\Delta f = 400$ Hz, linear ramping in 40s

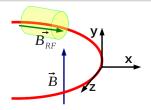
Fixed frequency measurements


Study of the spin resonance and solenoid strength effect.

Cooled

Uncooled

Development of a "No Lattice Model" to reproduce data


G.Guidoboni Synchrotron Oscillation Effects

No Lattice Model: basic idea

- No particle tracking.
- Circular ring with a constant \vec{B} and an RF-solenoid.
- Effects on spin orientation
 - ightarrow 2 rotation matrices.

$$\begin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \cos(\omega_r) & \mathbf{0} & -\sin(\omega_r) \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \sin(\omega_r) & \mathbf{0} & \cos(\omega_r) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\omega_s) & -\sin(\omega_s) & \mathbf{0} \end{bmatrix}$$

$$\frac{\cos(\omega_s)}{\cos(\omega_s)} = \frac{-\sin(\omega_s)}{\cos(\omega_s)} = 0$$

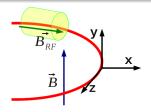
Spin precession per turn

 $\omega_r = 2\pi\nu_s f_{cyc}$

with $u_s = G\gamma$ spin tune

Solenoid kick

$$\omega_s = 2\pi\epsilon \cos(2\pi f_{res}t + \phi_s),$$


with ϵ =solenoid strength $t = \frac{n}{f_{cyc}}$, n = turn number

Valid for a particle on the central orbit and at f_{cyc}

No Lattice Model: basic idea

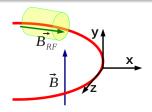
- No particle tracking.
- Circular ring with a constant \vec{B} and an RF-solenoid.
- Effects on spin orientation
 - \rightarrow 2 rotation matrices.

$$\begin{array}{ccc} \hat{\chi} & \hat{y} & \hat{z} \\ \cos(\omega_r) & 0 & -\sin(\omega_r) \\ 0 & 1 & 0 \\ \sin(\omega_r) & 0 & \cos(\omega_r) \end{array} \\ \left[\begin{array}{ccc} \cos(\omega_s) & -\sin(\omega_s) & 0 \\ \sin(\omega_s) & \cos(\omega_s) & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Spin precession per turn $\omega_r = 2\pi\nu_s f_{cyc}$ with $\nu_s = G\gamma$ spin tune

Solenoid kick

$$\omega_s = 2\pi\epsilon \cos(2\pi f_{res}t + \phi_s),$$


with ϵ =solenoid strength $t = \frac{n}{f_{cyc}}$, n = turn number

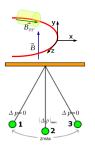
Valid for a particle on the central orbit and at f_{cyc}

No Lattice Model: basic idea

- No particle tracking.
- Circular ring with a constant \vec{B} and an RF-solenoid.
- Effects on spin orientation
 - \rightarrow 2 rotation matrices.

$$\begin{array}{ccc} \hat{\chi} & \hat{y} & \hat{z} \\ \cos(\omega_r) & 0 & -\sin(\omega_r) \\ 0 & 1 & 0 \\ \sin(\omega_r) & 0 & \cos(\omega_r) \end{array} \\ \left[\begin{array}{ccc} \cos(\omega_s) & -\sin(\omega_s) & 0 \\ \sin(\omega_s) & \cos(\omega_s) & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Spin precession per turn $\omega_r = 2\pi\nu_s f_{cyc}$ with $\nu_s = G\gamma$ spin tune


Solenoid kick

$$\omega_s = 2\pi\epsilon cos(2\pi f_{res}t + \phi_s),$$

with ϵ =solenoid strength $t = \frac{n}{f_{cyc}}$, n = turn number

Valid for a particle on the central orbit and at f_{cyc}

No Lattice Model: synchrotron oscillations

Synchrotron oscillations

EDM at COSY Data analisys

• Sinusoidal oscillations along the beam (z) about the center of the bunch.

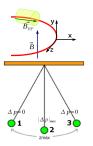
 $z(t) = zmax \cdot sin(2\pi f_{sync}t + \phi_{sync})$

Effects

$$\frac{\Delta p}{p} \to \frac{\Delta \gamma}{\gamma}$$

spin tune
$$u_s = G\gamma$$

$$\omega_r = 2\pi (
u_s + \Delta
u_s) f_{cyc}$$


• z oscillation $\xrightarrow{reflects} \Delta p$ oscillation.

$$\frac{\Delta p}{p} \to \frac{\Delta t}{t}$$

ransit time throught RF-solenoid

$$\omega_s = 2\pi\epsilon \cos(2\pi f_{res}(t-t_p) + \phi_s)$$

No Lattice Model: synchrotron oscillations

Synchrotron oscillations

EDM at COSY Data analisys

• Sinusoidal oscillations along the beam (z) about the center of the bunch.

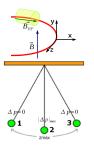
$$z(t) = zmax \cdot sin(2\pi f_{sync}t + \phi_{sync})$$

• z oscillation
$$\xrightarrow{reflects} \frac{\Delta p}{p}$$
 oscillation.

Effects

$$\frac{\Delta p}{p} \to \frac{\Delta \gamma}{\gamma}$$

spin tune
$$\nu_s = G\gamma$$


$$\omega_r = 2\pi (
u_s + \Delta
u_s) f_{cyc}$$

$$\frac{\Delta p}{p} \to \frac{\Delta t}{t}$$

ransit time throught RF-solenoid

$$\omega_s = 2\pi\epsilon \cos(2\pi f_{res}(t-t_p) + \phi_s)$$

No Lattice Model: synchrotron oscillations

Synchrotron oscillations

EDM at COSY Data analisys

• Sinusoidal oscillations along the beam (z) about the center of the bunch.

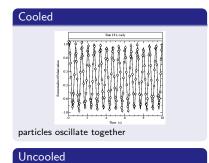
$$z(t) = zmax \cdot sin(2\pi f_{sync}t + \phi_{sync})$$

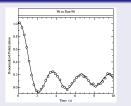
• z oscillation
$$\xrightarrow{reflects} \frac{\Delta p}{p}$$
 oscillation.

Effects

$$rac{\Delta p}{p}
ightarrow rac{\Delta \gamma}{\gamma}$$

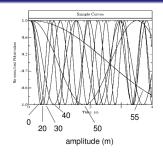
spin tune
$$\nu_s = G\gamma$$

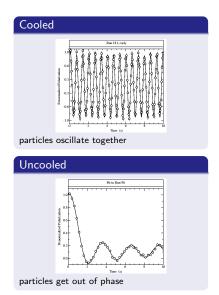

$$\omega_r = 2\pi (\nu_s + \Delta \nu_s) f_{cyc}$$


$$rac{\Delta p}{p}
ightarrow rac{\Delta t}{t}$$

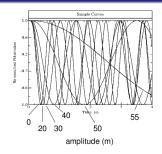
transit time throught RF-solenoid

$$\omega_s = 2\pi\epsilon \cos(2\pi f_{res}(t-t_p) + \phi_s)$$

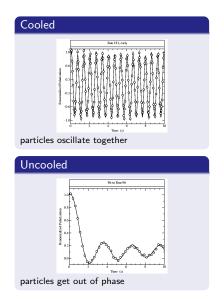

No Lattice Model: amplitude distribution



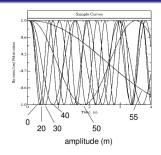
particles get out of phase


Vertical polarization P_y vs zmax

No Lattice Model: amplitude distribution



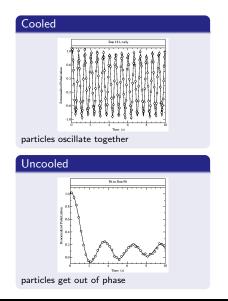
Vertical polarization P_y vs zmax



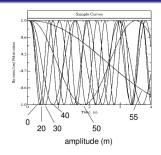
1) Larger amplitude \rightarrow Smaller RF-solenoid strength

No Lattice Model: amplitude distribution

Vertical polarization P_y vs zmax



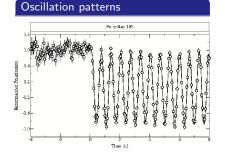
1) Larger amplitude \rightarrow Smaller RF-solenoid strength


Data oscillation patterns

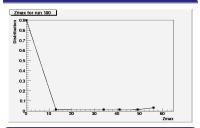
 $P_y = a_1 f(zmax_1) + \ldots + a_N f(zmax_N)$

No Lattice Model: amplitude distribution

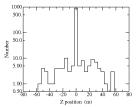
Vertical polarization P_y vs zmax


1) Larger amplitude \rightarrow Smaller RF-solenoid strength

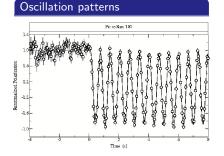
Data oscillation patterns


 $P_{y} = a_{1}f(zmax_{1}) + \ldots + a_{N}f(zmax_{N})$

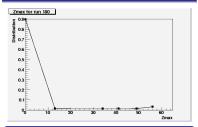
2)Choose amplitudes to reproduce data


Fixed Frequency data: cooled beam

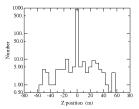
Amplitude distribution



Beam bunch distribution


Distribution of 1000 particles

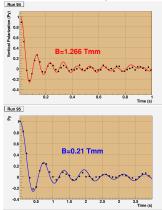
Fixed Frequency data: cooled beam



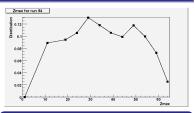
Uncooled portion leads to initial 9% depolarization

Amplitude distribution

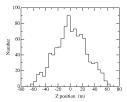
Beam bunch distribution



Distribution of 1000 particles

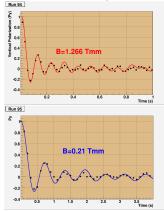

Fixed Frequency data: uncooled beam

Oscillation patterns

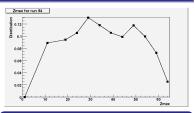

Different solenoid strengths

Amplitude distribution

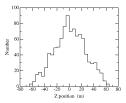
Beam bunch distribution



Distribution of 1000 particles


Fixed Frequency data: uncooled beam

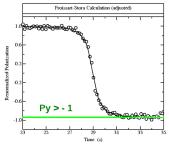
Oscillation patterns


Different solenoid strengths

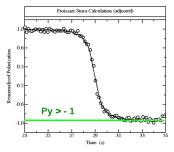
Amplitude distribution

Beam bunch distribution

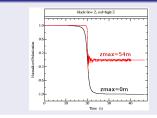
Distribution of 1000 particles


Bunch shape fits patterns

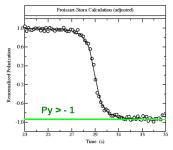
G.Guidoboni


Synchrotron Oscillation Effects

Froissart-Stora scan: uncooled beam

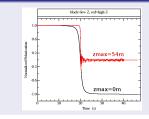

Not complete spin flip.

Froissart-Stora scan: uncooled beam

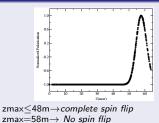


Not complete spin flip.

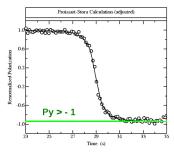
F-S for one particle



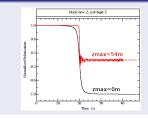
Froissart-Stora scan: uncooled beam

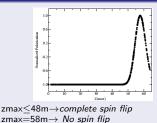


Not complete spin flip.


F-S for one particle

Final polarization vs Zmax

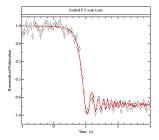

Froissart-Stora scan: uncooled beam


Not complete spin flip.

contribution from particles with 48≤zmax≤58m_____

F-S for one particle

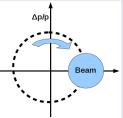
Final polarization vs Zmax



Froissart-Stora scan

COOLED beam

- complete flip for zmax < 48m.
- data \rightarrow no complete spin
- $\bullet \mbox{ data}{\rightarrow}\mbox{no fit with cooled beam distrib.}$
- data fit \rightarrow zmax \simeq 51m.


Froissart-Stora scan

COOLED beam

- complete flip for zmax < 48m.
- data \rightarrow no complete spin
- $\bullet \mbox{ data}{\rightarrow}\mbox{no fit with cooled beam distrib.}$
- data fit \rightarrow zmax \simeq 51m.

Double-peak effect

Cooled beam out of the central orbit. Contribution to higher $\Delta p/p$ (\rightarrow zmax).

Spin coherence time study for EDM experiment.

Development of a **No Lattice Model** (*synchrotron oscillations*) that well reproduces some of the experimental data:

Fixed frequecy scan

- importance of the amplitude distribution details.
- uncooled beam wiggles necessary to define the correct amplitude distribution.

Froissart-Stora scan

- modification of the solenoid flip efficiency (transit time through the RF-solenoid).
- RF-solenoid can no longer flip the spin for large amplitude.

Spin coherence time study for EDM experiment.

Development of a **No Lattice Model** (*synchrotron oscillations*) that well reproduces some of the experimental data:

Fixed frequecy scan

- importance of the amplitude distribution details.
- uncooled beam wiggles necessary to define the correct amplitude distribution.

Froissart-Stora scan

- modification of the solenoid flip efficiency (transit time through the RF-solenoid).
- RF-solenoid can no longer flip the spin for large amplitude.

Spin coherence time study for EDM experiment.

Development of a **No Lattice Model** (*synchrotron oscillations*) that well reproduces some of the experimental data:

Fixed frequecy scan

- importance of the amplitude distribution details.
- uncooled beam wiggles necessary to define the correct amplitude distribution.

Froissart-Stora scan

- modification of the solenoid flip efficiency (transit time through the RF-solenoid).
- RF-solenoid can no longer flip the spin for large amplitude.

Studies of the Horizontal Spin Coherence Lifetime

P. Benati, ¹ D. Chiladze,^{2,3} J. Dietrich,³ M. Gaisser,³ R. Gebel,³ G. Guidoboni,¹ V. Hejny,³ A. Kacharava,³ P. Kulessa,⁴ A. Lehrach,³ P. Lenisa,¹ B. Lorentz,³ R. Maier,³ D. Mchedlishvili,^{2,3} W.M. Morse,⁵ A. Pesce,¹ A. Polyanskiy,³⁶ D. Prasuhn,³ F. Rathmann,³ Y.K. Semertzidis,⁵ <u>E.J.</u> <u>Stephenson</u>,⁷ H. Stockhorst,³ H. Ströher,³ R. Talman,⁸ Yu. Valdau,³⁰ Ch. Wiedeman,³ and P. Wüstner¹⁰

¹University of Ferrara and INFN, 44100 Ferrara, Italy ²High Energy Physics Institute, Tbilisi State University, 0218 Tbilisi, Georgia ³IKP, Forschungszentrum Jilich, 52425 Jilich, Germany ⁴Jagiellonian University, 31-007 Krakow, Poland ⁵Brookhaven National Laboratory, Upton, New York 11973 USA ⁶Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia ⁷Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 USA ⁸Cornell University, Ithaca, New York 14850 USA ⁹Petersburg Nuclear Physics Institute, Gatchina 188350, Russia ¹⁰ZEL, Forschungszentrum Jülich, 52425 Jilich, Germany

Studies of the Horizontal Spin Coherence Lifetime

P. Benati,¹ D. Chiladze,^{2,3} J. Dietrich,³ M. Gaisser,³ R. Gebel,³ G. Guidoboni,¹ V. Hejny,³ A. Kacharava,³ P. Kulessa,⁴ A. Lehrach,³ P. Lenisa,¹ B. Lorentz,³ R. Maier,³ D. Mchedlishvili,^{2,3} W.M. Morse,⁵ A. Pesce,¹ A. Polyanskiy,³⁶ D. Prasuhn,³ F. Kathmann,³ Y.K. Semertzidis,⁵ <u>E.J.</u> <u>Stephenson</u>,⁷ H. Stockhorst,³ H. Ströher,³ R. Talman,⁸ Yu. Valdau,^{3,9} Ch. Wiedeman,³ and P. Wüstner¹⁰

¹University of Ferrara and INFN, 44100 Ferrara, Italy ²High Energy Physics Institute, Tbilisi State University, 0218 Tbilisi, Georgia ³IKP, Forschungszentrum Jilich, 52425 Jilich, Germany ⁴Jagiellonian University, 31-007 Krakow, Poland ⁵Brookhaven National Laboratory, Upton, New York 11973 USA ⁶Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia ⁷Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 USA ⁶Cornell University, Ihhaca, New York 14850 USA ⁹Petersburg Nuclear Physics Institute, Gatchina 188350, Russia ¹⁰ZEL, Forschungszentrum Jülich, 52425 Jilich, Germany

