


Introduction
EDM at COSY

Data analisys

Why it is important to study the Electric Dipole Moment

EDM is a permanent charge separation within the particle volume.

EDM must lie along the spin axis

EDM violates both P and T

Under CPT theorem

CP VIOLATION → Baryon Asymmetry

Standard Model is not enough to explain
the BA

SM predicts a non vanishing EDM but
unobservably small
|de |SM < 10−38e · cm
|dn|SM < 10−32e · cm

Models beyond SM predict values within
the sensitivity of current or planned
experiments
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Introduction
EDM at COSY

Data analisys

How to measure EDM for charged particles?

1
d~s

dt
= ~dx~E EDM signal=spin precession

charge particle would be lost in ~E !

2 Storage ring is the solution for charge particles!

→ Injection with spin aligned along the velocity
and radial ~E field

3 Keep spin aligned with velocity.
→Frozen spin technique

~ωa = ~ωs − ~ωc = − q

m

{
a~B +

[
a−

(
m

p

)2
]
~βx~E

c

}
= 0

ωs Spin precession in the horizontal plane
ωc Particle angular frequency

a =
g − 2

2
anomalus moment

Different solutions for proton and deuteron
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How to measure EDM for charged particles in a storage ring?

Frozen spin techinque

~ωa = − q

m

{
a~B +

[
a−

(
m

p

)2
]
~βx~E

}
= 0, a =

g − 2

2

Proton solution

a=1.79

magic momentum

p =
m√
a

= 0.7GeV /c

⇒

[
a−

(
m

p

)2
]

= 0

pure electric ring
~B = 0

Deuteron solution

a=-0.14 ⇒ @ magic momentum

~B with outward ~E

E =
aBcβγ2

1 + aβ2γ2
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EDM at COSY

Data analisys

How to measure EDM for charged particles in a storage ring?

Spin Coherence time?

Minimal detectable precession θ ≈ 10−6rad

(vertical polarization measurement
→ see next slides)

Assuming d ≈ 10−29e · cm and E = 17MV /m

θEDM (t) =
2dE

~
t = 5

(
10−9rad

s

)
t

1 turn ≈ 10−6s

⇒ θEDM ≈
10−15rad

turn

109 turns needed to detect θEDM

spin coherence time t > 1000s

10−29e · cm precision → 1 year of data taking.

Beam polarization studies at COSY!
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Data analisys

EDDA detector

EDM signal from the
asymmetry

εEDM =
L− R

L + R
=

3

2
pV Ay

beam moves toward thick target→ continuous extraction

EDDA scintillators stop elastic deuterons from the target

elastic scattering → spin sensitive process (large cross section for d-C)

G.Guidoboni Synchrotron Oscillation Effects



Introduction
EDM at COSY

Data analisys

EDDA detector

EDM signal from the
asymmetry

εEDM =
L− R

L + R
=

3

2
pV Ay

beam moves toward thick target→ continuous extraction

EDDA scintillators stop elastic deuterons from the target

elastic scattering → spin sensitive process (large cross section for d-C)

G.Guidoboni Synchrotron Oscillation Effects



Introduction
EDM at COSY

Data analisys

Polarization measurements at COSY

Original aim

Study of momentum spread
∆p

p
and emittance effects on the spin coherence

time of a deuteron beam.

But...

Synchrotron oscillation effects dominated our measurments!
The rest of this talk is about synchrotron oscillations.

Experimental conditions

RF-solenoid spin resonance.

Continuous record of vertical polarization (EDDA detector).

Deuteron beam momentum p = 0.97GeV/c

Relativistic factor γ = 1.12583

Cyclotron frequency fcyc = 750602.5± 0.5Hz

Bunched beam (h=1)

cooled and uncooled
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Polarization measurements at COSY

Froissart-Stora frequency scan

Identification of the spin resonance
frequency.

fres = fcyc (1− Gγ) > fcyc

∆f =400Hz, linear ramping in 40s

Fixed frequency measurements

Study of the spin resonance and
solenoid strength effect.

Cooled and Uncooled bunch shape

Uncooled

Development of a “No Lattice Model” to reproduce data
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No Lattice Model: basic idea

No particle tracking.

Circular ring with a constant ~B and an
RF-solenoid.

Effects on spin orientation
→ 2 rotation matrices.

x̂ ŷ ẑ cos(ωr ) 0 −sin(ωr )
0 1 0

sin(ωr ) 0 cos(ωr )


 cos(ωs ) −sin(ωs ) 0

sin(ωs ) cos(ωs ) 0
0 0 1



Spin precession per turn

ωr = 2πνs fcyc

with νs = Gγ spin tune

Solenoid kick

ωs = 2πεcos(2πfrest + φs ),

with ε =solenoid strength

t =
n

fcyc
, n = turn number

Valid for a particle on the central orbit and at fcyc
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No Lattice Model: synchrotron oscillations

Synchrotron oscillations

Sinusoidal oscillations along the beam (z) about the
center of the bunch.

z(t) = zmax · sin(2πfsynct + φsync )

z oscillation
reflects−−−−→ ∆p

p
oscillation.

Effects

∆p

p
→

∆γ

γ
spin tune νs = Gγ

ωr = 2π(νs + ∆νs )fcyc

∆p

p
→

∆t

t
transit time throught RF-solenoid

ωs = 2πεcos(2πfres (t − tp) + φs )
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Data analisys

No Lattice Model: amplitude distribution

Cooled

particles oscillate together

Uncooled

particles get out of phase

Vertical polarization Py vs zmax

1) Larger amplitude
→ Smaller RF-solenoid strength

Data oscillation patterns
Py = a1f (zmax1) + ... + aN f (zmaxN )

2)Choose amplitudes to reproduce data
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Fixed Frequency data: cooled beam

Oscillation patterns

Uncooled portion leads to initial
9% depolarization

Amplitude distribution

Beam bunch distribution

Distribution
of 1000
particles
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Froissart-Stora scan: uncooled beam

Not complete spin flip.

contribution from particles with
48≤zmax≤58m

F-S for one particle

Final polarization vs Zmax

zmax≤48m→complete spin flip
zmax=58m→ No spin flip
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Data analisys

Froissart-Stora scan

COOLED beam

complete flip for zmax≤48m.

data→no complete spin

data→no fit with cooled beam distrib.

data fit→zmax'51m.

Double-peak effect

Cooled beam out of the central orbit.
Contribution to higher ∆p/p (→ zmax).
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CONCLUSION

Spin coherence time study for EDM experiment.

Development of a No Lattice Model (synchrotron oscillations) that well
reproduces some of the experimental data:

Fixed frequecy scan

importance of the amplitude distribution details.
uncooled beam wiggles necessary to define the correct
amplitude distribution.

Froissart-Stora scan

modification of the solenoid flip efficiency (transit time
through the RF-solenoid).
RF-solenoid can no longer flip the spin for large amplitude.
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