

Implementation of Silicon Detector Arrays in the UHV Environment of Storage Rings

Branislav STREICHER for the EXL collaboration

8th International Conference on Nuclear Physics at Storage Rings - STORI'11

9 - 14 October 2011, Laboratori Nazionali di Frascati

Part 1 Motivation & Physics Background

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 2 Laboratori Nazionali di Frascati

EXL* Project @ FAIR

Advantages:

- → High intensities in the ring
- → Little energy loss in the target
- → No target window (no background) → Ultra high vacuum (UHV)

Challenges:

- → Very small recoil energies for small q
- Thin targets
- Small energy/momentum spread of the beam (cooling)

*EXL = EXotic nuclei studied in Light ion induced reactions at the NESR storage ring

EXL Project @ FAIR

EXL Project @ NESR*:

- Reactions with radioactive beams in inverse kinematics
- → Recoil detector ESPA (EXL's Silicon Particle Array)
- Hundreds of DSSDs planned
- Placement in storage ring environment

ESPA Development:

 \rightarrow Performance tests using α -sources at GSI, Edinburgh

ESPA

- EXL telescope demonstrator tests at GSI, KVI
- PSD experiment at TU München
- Construction of DSSD prototypes at GSI from chips manufactured at PTI St. Petersburg

• UHV vacuum prototype tests

* downscaled version planned @ ESR

EXL's Detector Requirements

Detection of light particles (p, d, t, α):

- transmission detectors
- good energy resolution
- good position resolution
- Iow detection threshold (< 100 keV)
- → high dynamic range (100 keV 25 MeV)

Telescopes of DSSD – Si(Li) – Csl

- → total energy reconstruction
- distinguish between low-energy vs. passing-through particles
- → separation of different reaction channels

Ultra High Vacuum (UHV) compatibility:

- Iow outgassing materials PCB, connectors, electronics etc.
- reasonable pumping-baking times after ESPA installation in ESR/NESR

university of

groningen

Telescope setup

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 5 Laboratori Nazionali di Frascati

Part 2 Windowless Telescope @ the UHV of the Storage Ring

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 6 Laboratori Nazionali di Frascati

Using DSSDs as High-Vacuum Barrier

Differential pumping proposed to separate NESR vacuum from EXL instrumentation (cabling, FEE, other detectors) , 1x10^{⁻7}mbar Space for other DSSDs, Si(Li), FEE and cabling DSSDs **ESR** $\sim 1 \times 10^{-10}$ mbar CABLING PUM Inner shell of DSSDs on support frame forms (bakeable) vacuum barrier 8th International Conference on Nuclear Physics university of

groningen

Vacuum Barrier Demonstrator

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 8 Laboratori Nazionali di Frascati

Mechanical Requirements and Separation Principle

- PCB with one "clean" side no connectors, soldering etc.
 - Connections from one side of DSSD must be driven on the other side
- → Bakeability up to at least 200°C
 - restricted choice of materials
 - matched thermal expansion coefficients
- PCB should be easily replaceable from the frame

Part 3 Differential Vacuum Demonstrator Construction

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 10 Laboratori Nazionali di Frascati

Mechanical Construction

university of

groningen

- → Aluminum wire used as a vacuum seal
 - welded wire
- → Base frame machined from CF150 flange
 - holds AI wire on top of which PCB is placed
 - has α -source holder
- → Top frame from stainless steal
 - has groove that fixes top AI wire
 - has mounts for connectors

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 11 Branislav Streicher Laboratori Nazionali di Frascati

Ceramic PCB and Connectors

- PCB designed to have "through-board" contacts
 - laser drilled holes for routing P-side contacts to N-side
 - holes hermetically sealed with glass layer
- Manufactured from Aluminum Nitride (AIN)
 - ultra low-outgassing + bakeable to > 200°C
 - expansion coefficient close to Silicon
 - high thermal conductivity
- → DSSD glued with EPO-TEK®H77S low-outgassing glue

- → Spring pins of 0.52 mm diameter used
- → Kapton coated bakeable cables used

university of

groningen

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 12 Laboratori Nazionali di Frascati

Test Stand @ GSI

- Two vacuum volumes separated by DSSD-PCB barrier
- Each volume equipped with a vacuum meter
- → UHV side Residual Gas Analyzer
- Needle valve on AV side to introduce artificial air leak

groningen

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 13 Laboratori Nazionali di Frascati

Part 4

Differential Vacuum Demonstrator Results

B. Streicher et al., Nucl. Instrum. Methods Phys. Res. A 654 (2011) 604-607

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 14 Laboratori Nazionali di Frascati

Differential Vacuum Tests

- Low rate of outgassing and residual gas spectra clear of contaminants for glued DSSD
- DSSD as a vacuum barrier could hold 6 orders of magnitude difference between low and UH vacuum in wide pressure region

Spectroscopic Performance

- → Does the bake-out cycle influences DSSD chip performance?
- Basic functionality test done by measuring 16 x 16 channels (4 channels coupled together on PCB) for P-side injection
- → Leakage current unchanged (~ 5-20 nA)

Part 5 Improvements, Current Development & Future Perspectives

Branislav Streicher

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 17 Laboratori Nazionali di Frascati

Mechanical Stability Improvement

- → Improved PCB layout
 - polished surface
 - rounded corners
 - 32 x 32 readout

- New Helicoflex[®] Delta rings flat shape, small contact area with the PCB
- → Reduction of shear stress on the PCB
 - Industry standart 30 200 N/mm
- All mechanics from the UHV side screws, cup washers – required for final ESR design

Further Prototyping (32x32 DSSD)

- → Improved UHV Test stand (10⁻¹¹ mbar)
 - New 300 I/s turbo pump

university of

groningen

- New Titanium sublimation pump
- → Tests are currently running at GSI

Further Prototyping (128x64 DSSD)

- → New 128x64 strip DSSD (64x66 mm²) constructed for the approved experimental proposal E105 @ ESR, GSI
- → Full spectroscopic test performed @ GSI

P-side injection ¹⁴⁸Gd source

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 20 Laboratori Nazionali di Frascati

Further Prototyping (128x64 DSSD)

- → Vacuum tests by the end of 2011
 - First using "dummy" DSSD
 - With real DSSD
- Resulting in the manufacture of the detector "pocket head"

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 21 Laboratori Nazionali di Frascati

"dummy" DSSD

Assembly of the EXL's ESR Chamber

Thermal tests using the real pocket

- SiLi cooling vs. pocket baking
- → Assembly of a vacuum system
 - Backup system required
- → ASIC development + cabling
 - Interconnecting DSSDs with ASIC
 - Proper signal propagation

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 22 Branislav Streicher Laboratori Nazionali di Frascati

Summary

- Proposed UHV solution for using telescopic detector setup inside the ESR / NESR with an active window - DSSD
- → Constructed and tested small UHV prototype using 32x32 DSSD
- → Vacuum of 1.2x10⁻¹⁰ mbar reached for UHV side
- → Difference bigger than 6 orders of magnitude between AV / UHV
- Air-leak like outgassing spectra clear of contaminants

Perspectives

Improved 32x32 DSSD & 128x64 DSSD UHV solution

- better PCB surface
- better sealing
- changed PCB shape
- → Thermal tests of the SiLi detectors in the ring environment
- → Assembly of the EXL's ESR pocket/s and chamber
 - construction in progress
- → Preparation of the ±105 experiment @ ESR (possibly in 2012)
- → Produce TDR for the EXL project @ NESR (possibly ESR) by the end of 2012

List Of Participants

Peter EGELHOF¹, Vladimir EREMIN⁴, Stoyanka ILIEVA^{1,2}, Annelie GLAZENBORG-KLUTTIG², Holger KOLLMUS¹, Thorsten KRÖLL³, Michel LINDEMULDER², Gerhard MAY¹, Manfred MUTTERER^{1,2}, Nasser KALANTAR-NAYESTANAKI², Mirko von SCHMID³, Branislav STREICHER^{1,2}, Michael TRÄGER¹

1) GSI Darmstadt, Germany

- 2) KVI Groningen, The Netherlands
- 3) TU Darmstadt, Germany
- 4) PTI St. Petersburg, Russia

Thank You!

EXL Experiment @ Present ESR - In-ring detectors

- In-ring detectors for coincidence measurement of beam-like particles before the first dipole
- → 2 detectors: 1 x in UHV, 1 x in auxiliary vacuum

Branislav Streicher

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 25 Laboratori Nazionali di Frascati

In-ring detectors: UHV detector

- → Six (1x1 cm²) PIN-diodes (300µm thick) on the AIN PCB
- → Bakeable to 250 °C
- Passed outgassing tests
- New prototype with improves cabling due till the end of 2011

Branislav Streicher

8th International Conference on Nuclear Physics at Storage Rings – STORI'11 26 Laboratori Nazionali di Frascati