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Simple idea to increase the target density
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* By changing the source parameters
(pressure and/or temperature) a
fragmentizing liquid droplet beam with
decreasing divergence can be produced

* Mass conservation leads to a significant
increase of the target density in the
interaction region
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The internal target station at the ESR

From the FRS

To the SIS
Quadrupole- Hexapole-
triplet magnets

Dipole magnet Septum-———"

magnet

]« Schottky pick-ups
Electron

Gas-target
ol cooler

- Quadrupole-

RF-Accelerating Fast kicker
cavity magnet

L

Extraction

X-y-z-0-¢
Closed Cycle

ﬁ HELMHOLTZ

| GEMEINSCHAFT

Manipulator

Cryostat: ..., :

T,=6-300K ‘ya
Gas Inlet: P, =0 — 50 bar

]

5 um Nozzle-....,,

Sklmmer.,‘?::m

) .
- a
\:o. ) . )
*. .’0 e
-
o e .
*

*
1 L IS

E, ~102-10% mbar

[ &

E, ~10*-10% mbar

[ #

E, ~ 105 - 107 mbar™, ™

w .

S—

WWK ~ 10 — 101" mbar ~\Y/,

' N

“E, ~ 10 — 10 mbar

ﬁ]

P, (~2,5m) O 4 O P2 (~1m)
ccoor B S, ~ 10 — 10 mbar
Photomultiplier —

S;~107 - 10° mbar
l | S, ~10%-10% mbar
r

a | ,
|

S, ~10*-107 mbar

._.h

r/. rrad..,
T "*0.3° opening angle

——



Test this simple idea: H, and He targets at the ESR
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Many open questions

* Does the very high droplet local density (= 1022 cm-3)
has any important effect, e.g., for ion cooling?

* Interaction studies between micrometer-sized
hydrogen pellets and relativistic protons have been
reported, but the situation is expected to change
dramatically for HCI since energy losses scale with the
square of the charge number.




The Schottky-pickup diagnostics: energy losses

* The Schottky provides the revolution
frequency spectrum of the circulating
ions, characterized by a mean revolution
frequency f,, which is directly related to
the longitudinal ion momentum.
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The Schottky-pickup diagnostics: energy losses

* The measured lon energy-losses are in R e ,:
reasonable agreement with predictions _ - -
based on the Bethe-Bloch formula for a 10 o 4
uniform target density corresponding to our _ - ~
measured mean nAx. 1 L ] - U+ @ 400 MeV/u-

= : s 3
 However, they are of up to three orders of E F - ” -]
magnitude smaller than those expected on E 10 7*,’__
the basis of the Bethe-Bloch formula for a < _ - 1
sub-micron hydrogen droplet with a local L,\j - ; * :
density of = 10?2 cm3 (of the order of 10* < P U9 @ 216 MeV/u’
eV).
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Interpretation of the energy losses

* A small fraction (estimated to be 10 per
turn) of the HCls undergoes direct collisions
with the target beam droplets

* After a single collision event the droplet
probably disintegrates, producing both
neutral and ionized atoms and larger
fragments.

* Since this fragmentation process occurs on
the picosecond time scale, the
experimentally measured energy losses are
likely primarily dominated by the
interaction of the HCls with the nearly
spatially uniform target consisting of the
fragmentation products.
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Dramatic cooling effects

* The achieved high densities provides the most direct evidence so far for a dramatic energy
loss event during interaction with a H, target that cannot be balanced by the electron cooler

The appearance of a broad
80 ‘ distribution results from the
| finite dispersion at the target
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Major drawback: target beam instability

ﬁ HELMHOLTZ

| GEMEINSCHAFT GSI

However, serious target
beam instabilities make the
use of the droplet target
beam for normal user
operation presently
unreliable
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Solution: CERN nozzle for optimal user operation

The use of a CERN-type nozzle (kindly
provided by A. Khoukaz for the PANDA
collaboration) provides high target
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Solution: CERN nozzle for optimal user operation
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Solution: CERN nozzle for optimal user operation

* The use of a CERN-type nozzle (kindly
provided by A. Khoukaz for the PANDA
collaboration) provides high target
densities for both the low-Z (H,) and the
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Present maximum values limited by the geometry

 The maximum target densities, especially
for the light targets, are currently set by the
target beam inlet geometry, which severely
limits the source cooling capacity of the
closed cycle cryostat




Cryogenic liquid jets as mass-limited targets

e Cryogenic liguids expanding in vacuum represent the ideal realization of a mass-limited
target ideally suited for relativistic laser-plasma generation

-0~ 0:- 00 OO O0H & V> O 00000 0O

 The droplets
v’ are truly “free-standing”

v’ are replenished at MHz repetition rates, thus eliminating the problem
of target replacement after each laser shot
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Cryogenic liquid jets as mass-limited targets

e Cryogenic liguids expanding in vacuum represent the ideal realization of a mass-limited
target ideally suited for relativistic laser-plasma generation

-0~ 0:- 00 OO O0H & V> O 00000 0O

v’ For laser-driven acceleration hydrogen droplets are the most appealing

v' For WDM studies droplets of the heavy cryogenic gases (e.g., argon ) are required




Critical issue with cryogenic liquid jets: freezing

* However, Cryogenic liquids of interest rapidly cool by surface evaporation and start freezing
before breakup occurs

-0~ 0:- 00 OO O0H & V> O 00000 0O

= Liquid (transparent) Solid (opaque)

Onset of crystallization



Avoiding freezing for droplet production
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¢ Simple solution: to avoid freezmg eXpand Schema of the prototype droplet inlet system for PANDA
the liquid jet in a gas kept close to triple- (Uppsala University)

point (TP) conditions E_l; Piezo-electric transducer
|

Glass nozzle outlet

Liquid jet
* The production of large hydrogen droplets I quml :f ,
by injecting the liquid into a TP chamber has : ropie T
been demonstrated within the PANDA /\ﬂ/\ Vacuum injection capillary
collaboration =
* However, the considerable dimensions of NI IIIAN

the droplet inlet system and the droplet , Skimmer
beam divergence preclude its use for laser- l '

.. Interaction point
plasma applications

— One has to deliver droplets
synchronized temporally with the
laser pulse with a spatial stability
better than half the laser focus (= 5

um)
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Two-fluid stream droplet beam source
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Two-fluid stream droplet beam source
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Two-fluid stream droplet beam source

leN

See——————

-

o

Collimation is
achieved off line by
producing, in air, an
isopropanol beam




Two-fluid stream droplet beam source
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Coflowing outer Ar gas
sheath (= 300 mbar)

Continuous liquid Ar filament

Rayleigh breakup




Two-fluid stream droplet beam source: argon
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Two-fluid stream droplet beam source: argon

| GEMEINSCHAFT G=SI

435.89 kHz
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Two-fluid stream droplet beam source
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Spatial stability analysis
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Spatial stability analysis
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* Multiple shot

.o
.......................................

Z (mm)

. Argon
..... o o

] o %
] .O (o] e] °© OOQ... ¢
02.09g.g.

Hydrogen

—71 r 1 1 - 1 1 1 7
0 1 2 3 4 5 6 7
Distance, z (mm)

e

Relative displacement, {or) (um)
O = N W P~ O1OO)N 0
|



Annoying capillary clogging problem




Annoying clogging problem: copper clog?




Annoying clogging problem: copper clog?




Annoying clogging problem: copper clog?
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Outlook

interaction.

underlying processes extremely difficult
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Strong experimental evidence for non trivial relativistic highly-charged ion — droplet beam

However, so far non-ideal experimental conditions and theoretical description of the

,Comet“-like events
observed during several
beamtimes employing
droplet beams



Outlook
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* Strong experimental evidence for non
trivial relativistic highly-charged ion —

for single-ion

techniques with microscopic droplet beams _
analysis (2010)

to provide nearly ideal conditions

droplet beam interaction. 1

* However, so far non-ideal experimental g‘
conditions and theoretical description of ﬂ
the underlying processes extremely difficult f
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* Exploit the possible combination of newly New resonator 7
developed storage-ring diagnostic cavity at the ESR
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Outlook

Strong experimental evidence for non
trivial relativistic highly-charged ion —
droplet beam interaction.

However, so far non-ideal experimental
conditions and theoretical description of
the underlying processes extremely difficult

Exploit the possible combination of newly
developed storage-ring diagnostic
techniques with microscopic droplet beams
to provide nearly ideal conditions

These experiments might offer
unprecedented possibilities for novel
investigations of light — matter interaction
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