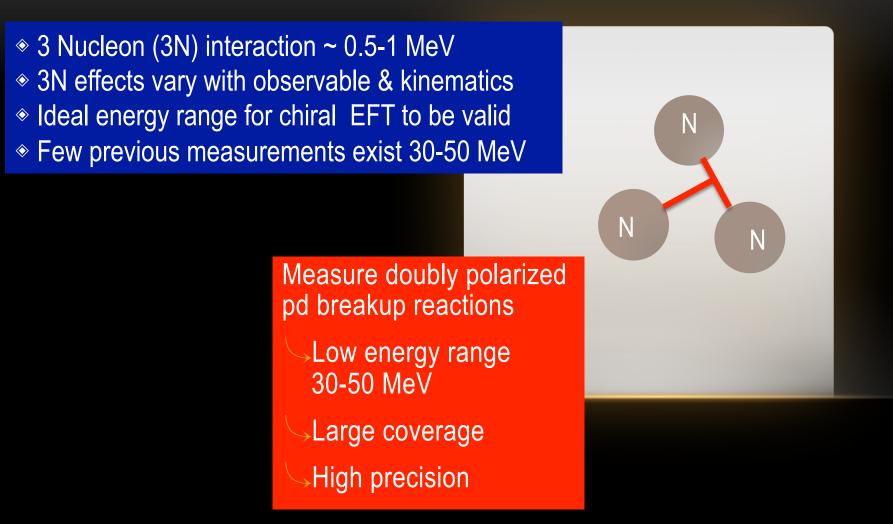
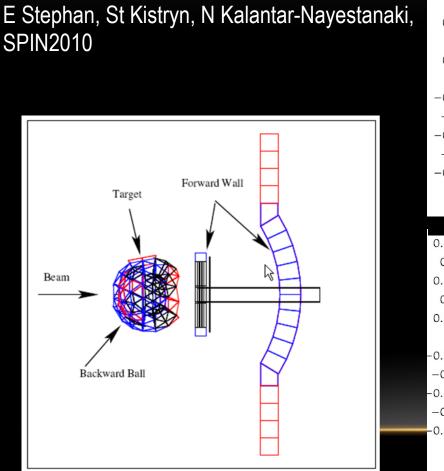
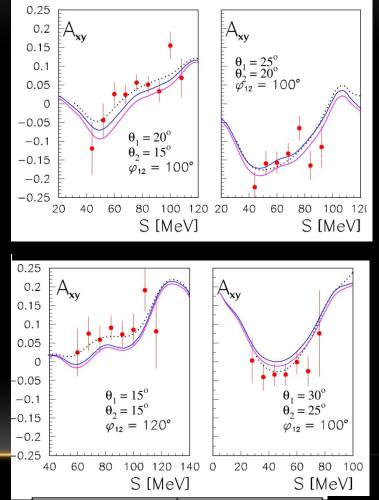
8th International Conference on Nuclear Physics at Storage Rings

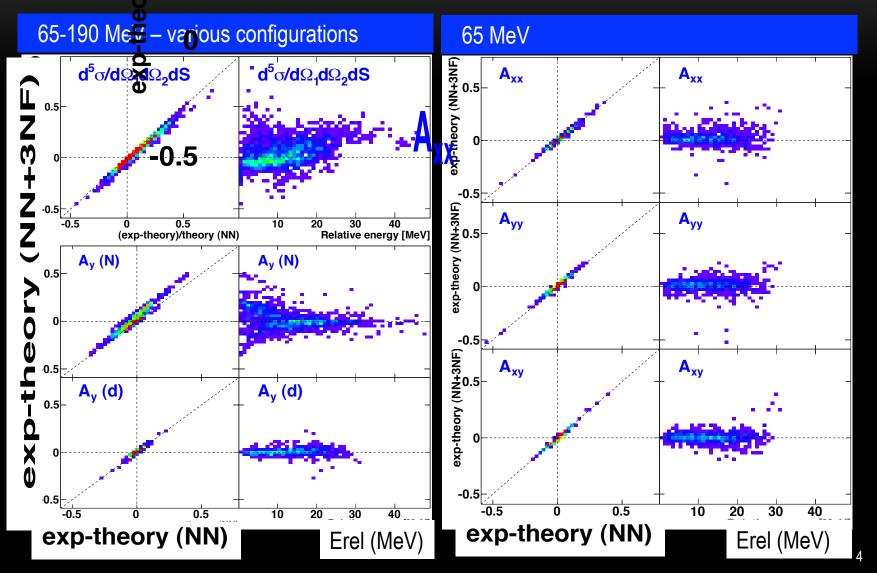


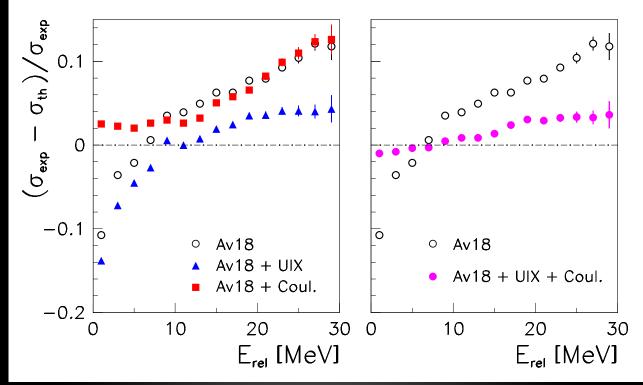
Laboratori Nazionali di Frascati, 9-14 October 2011


EXTENSIVE HIGH PRECISION STUDIES OF PROTON DEUTERON BREAKUP REACTIONS @COSY

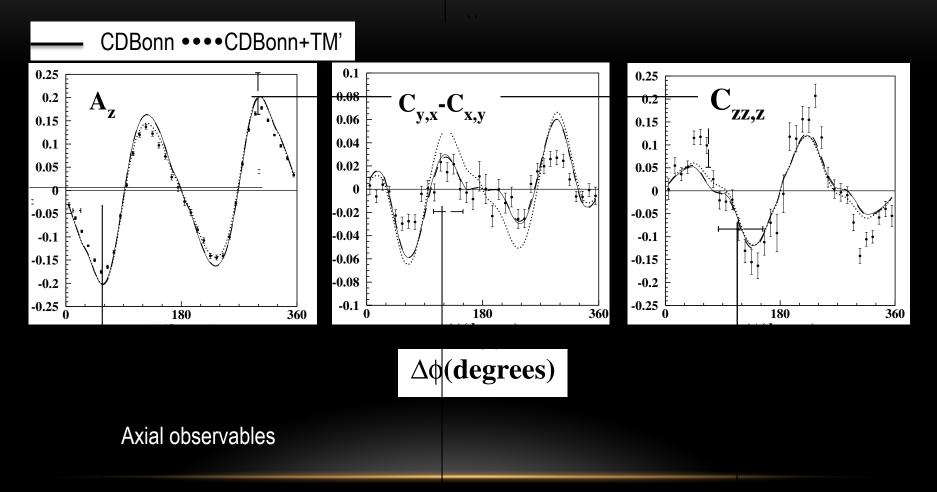

Pia Thöngren Engblom for the PAX Collaboration University of Ferrara The Royal Technical High School, Stockholm

COSY proposal 202


TENSOR ANALYZING POWERS 50 MEV/A


Figure from Xiv:1108.1227, NYKalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp, A. Nogga Signatures of three-nucleon interactions in few-nucleon systems

Status 3n in od breakup


1H(D,PP)N REACTION @KVI AT 65 MEV/A BUP CROSS SECTIONS

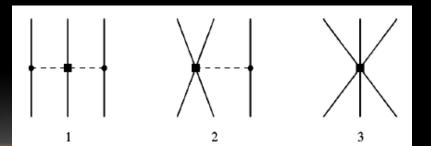
St Kistryn, E Stephan and N Kalantar-Nayestanaki SPIN 2010

H.O. Meyer et al., Phys. Rev. Lett. 93, 112502 (2004), T.J. Whitaker IUCF PhD thesis

STATUS 3N IN PD BREAKUP: 135 MEV/A

MODERN THEORY OF NUCLEAR FORCES

Epelbaum, Prog. Part. Nucl. Phys. 57 (2006) 57

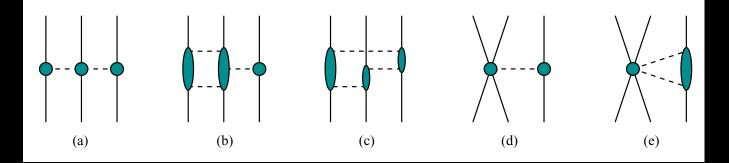

Chiral effective field theory:

Systematic & model independent framework for low-energy hadron physics

Few body forces enter naturally with increasing order

At N2LO - first nonvanishing terms from the chiral Three-Nucleon Force (3NF)

Two-pion exchange One-pion exchange Contact interaction



MODERN THEORY OF NUCLEAR FORCES

At N3LO – V. Bernard, E. Epelbaum H. Krebs, Ulf-G. Meißner, Phys. Rev. C 77, 064004 (2008)

derived long-range contributions to 3NF

 short-range contributions and the leading relativistic corrections to the three-nucleon force (3NF)

"Subleading contributions to the chiral three-nucleon force II: short-range terms and relativistic corrections" V. Bernard, E. Epelbaum H. Krebs,Ulf-G. Meißner, <u>arXiv:1108.3816v1</u>

Calculations soon ready for scattering – priv. comm. Epelbaum

22 OBSERVABLES

$$\sigma = \sigma_0 (1 + p_y A_y(p) + p_z A_z(p) + \frac{3}{2} q_y A_y(d) + \frac{3}{2} q_z A_z(d) + \frac{3}{4} (q_x p_x + q_y p_y)(C_{x,x} + C_{y,y}) + \frac{3}{4} (q_x p_x - q_y p_y)(C_{x,x} - C_{y,y}) + \frac{3}{4} (q_y p_x - q_x p_y)(C_{y,x} - C_{x,y}) + \frac{3}{2} q_x p_z C_{x,z} + \frac{3}{2} q_z p_x C_{z,x} + \frac{3}{2} q_z p_z C_{z,z} + \frac{1}{6} (q_{xx} - q_{yy})(A_{xx} - A_{yy}) + \frac{1}{2} q_{zz} A_{zz} + \frac{2}{3} q_{xz} A_{xz} + \frac{1}{6} (q_{xx} - q_{yy}) p_y (C_{xx,y} - C_{yy,y}) + \frac{1}{2} q_{zz} p_z C_{zz,z} + \frac{1}{2} q_{zz} p_y Czz, y + \frac{2}{3} q_{xy} p_x C_{xy,x} + \frac{2}{3} q_{xz} p_y C_{xz,y} + \frac{2}{3} q_{yz} p_x C_{yz,x} + \frac{2}{3} q_{yz} p_z C_{yz,z} + \frac{1}{3} (q_{xz} p_x + q_{yz} p_y)(C_{xz,x} + C_{yz,y}))$$

PolObs	pU dU	pU dS	pU dA	pA dU	pA dS	pA dA	pU dAU	pU dAS
$A_y(p)$	Х	Х	Х				Х	X
$\mathbf{A_z}(\mathbf{p})$				Х	Х	Х	pA dAU	pA dAS
$A_y(d)$	Х	Х		Х	Х		Х	Х
$\mathbf{A_z}(\mathbf{d})$			Х			Х	Х	X
$A_{xx} - A_{yy}$	Х	Х		Х	Х		Х	Х
A_{zz}	Х	Х	Х	Х	Х	Х	Х	Х
A_{xz}							Х	X
$C_{x,x} + C_{y,y}$	X						X	
$C_{x,x} - C_{y,y}$	Х	Х					Х	X
$\mathbf{C}_{\mathbf{y},\mathbf{x}} - \mathbf{C}_{\mathbf{x},\mathbf{y}}$		Х						X
$C_{x,z}$				X	Х		pA dAU	pA dAS
$C_{z,x}$			Х				Х	Х
$C_{z,z}$						Х	pA dAU	pA dAS
	 V	X					X	X
$C_{xx,y} - C_{yy,y}$	X	Λ				X	X X	
$\mathbf{C}_{\mathbf{x}\mathbf{z},\mathbf{x}} + \mathbf{C}_{\mathbf{y}\mathbf{z},\mathbf{y}}$				X	X	X X		pA dAS
$C_{zz,z}$	X	X	X	Λ	Λ	Λ	$\frac{pA \ dAU}{X}$	
$C_{zz,y}$	X X		Λ				X X	X X
$C_{xy,x}$	Λ	X						
$C_{xz,y}$							X	X
$C_{yz,x}$				37	37		X	X
$C_{xy,z}$				X	X		pA dAU	pA dAS
$C_{yz,z}$							pA dAU	pA dAS

PolObs	pU dU	pU dS	pU dA	pA dU	pA dS	pA dA	pU dAU	pU dAS
$A_y(p)$	Х	Х	X				Х	X
$\mathbf{A_z}(\mathbf{p})$				Х	Х	Х	pA dAU	pA dAS
$A_y(d)$	Х	Х		Х	Х		Х	X
$\mathbf{A_z}(\mathbf{d})$			Х			Х	Х	X
$A_{xx} - A_{yy}$	Х	Х		Х	Х		Х	Х
A_{zz}	Х	Х	Х	Х	Х	Х	Х	Х
A_{xz}							Х	X
$C_{x,x} + C_{y,y}$	Х						Х	
$C_{x,x} - C_{y,y}$	Х	X					Х	X
$\mathbf{C}_{\mathbf{y},\mathbf{x}} - \mathbf{C}_{\mathbf{x},\mathbf{y}}$		Х						Х
$C_{x,z}$				Х	Х		pA dAU	pA dAS
$C_{z,x}$			Х				Х	Х
$C_{z,z}$						Х	pA dAU	pA dAS
$C_{xx,y} - C_{yy,y}$	X	Х					Х	Х
$\mathbf{C}_{\mathbf{x}\mathbf{z},\mathbf{x}} + \mathbf{C}_{\mathbf{y}\mathbf{z},\mathbf{y}}$						Х	Х	
$\mathbf{C}_{\mathbf{z}\mathbf{z},\mathbf{z}}$				Х	Х	Х	pA dAU	pA dAS
$C_{zz,y}$	Х	Х	X				Х	X
$C_{xy,x}$	Х	Х					Х	X
$C_{xz,y}$							Х	X
$C_{yz,x}$							Х	X
$C_{xy,z}$				Х	Х		pA dAU	pA dAS
$C_{yz,z}$							pA dAU	pA dAS

A SAMPLING METHOD TO COMPARE WITH THEORY

x is the set of parameters needed to determine the kinematics, at any point of phase space

$$O^{th}(x) = \frac{\int \sigma_0(x)\varepsilon(x)O^{th}(x)dx}{\int \sigma_0(x)\varepsilon(x)dx}$$

For a kinematically complete experiment, over some region γ of phase space

- The correctly averaged theoretical value is the mean

$$O^{th}(\gamma) = \left\langle O^{th} \right\rangle = \frac{\sum O^{th}(x_k)}{N(\gamma)}$$

J. Kuros -Żołnierczuk, P. Thörngren-Engblom, H.O. Meyer, T.J. Whitaker, H. Witała, J. Golak, H. Kamada, A. Nogga and R. Skibiński, Few-Body Systems **34**, 259 (2004)

STORI'11 FRASCATI

2011 Oct 9-14

A METHOD TO COMPARE BUP WITH THEORY

x is the set of parameters needed to determine the kinematics, at any point of phase space

$$O^{th}(x) = \frac{\int \sigma_0(x)\varepsilon(x)O^{th}(x)dx}{\int \sigma_0(x) & \sqrt{dx}}$$

For a kinematically complete.
- The correctly averaged theoretical become to a grid of precalculated
$$O^{th}(\gamma) = \left\langle O^{th} \right\rangle = \frac{\sum O^{th}(x_k)}{N(\gamma)}$$

J. Kuros -Żołnierczuk, P. Thörngren-Engblom, H.O. Meyer, T.J. Whitaker, H. Witała, J. Golak, H.

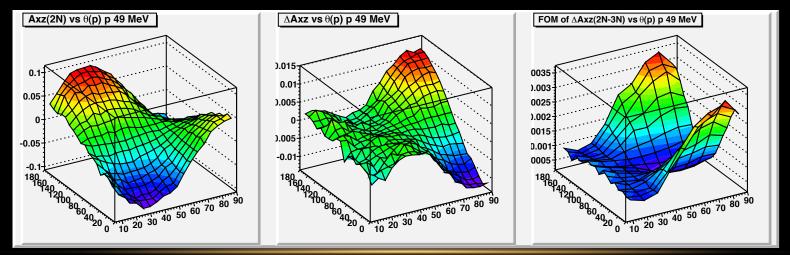
Kamada, A. Nogga and R. Skibiński, Few-Body Systems 34, 259 (2004)

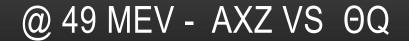
STORI'11 FRASCATI

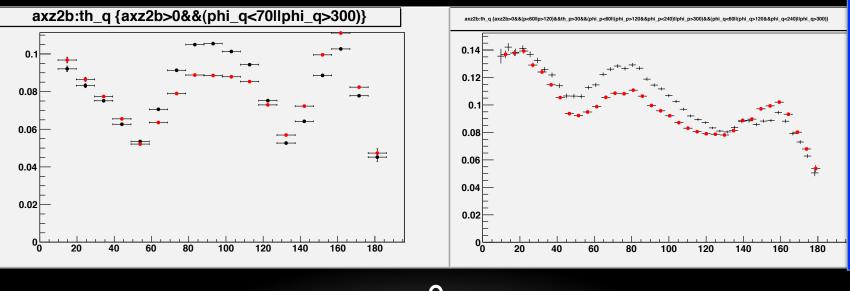
2011 Oct 9-14

GRID EXAMPLES

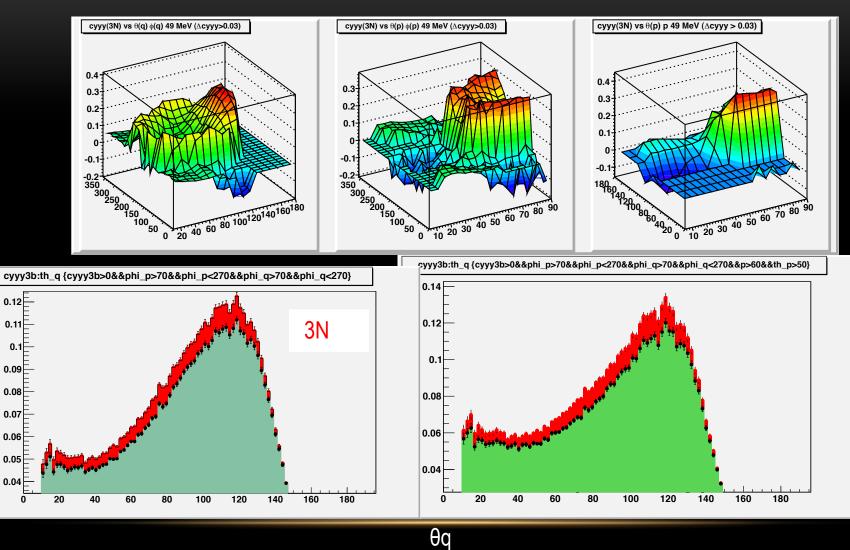
• Theoretical framework & calculations: Epelbaum & Nogga


GRID SPACING	
p # of steps	20
Θp # of steps	9
Θp [deg]	590
Θp # steps	18
Θp [deg]	10180
φp,q # steps	37
φp,q [deg]	0360
# of grid points	4,435,560


Using the sampling method & phase space simulation


@ 49 MEV - AXZ abs(daxz):th_p {phi_p<70llphi_p>300} htemp axz2b Entries 35606 Mean 57.48 0.016 Mean y 0.01436 RMS 21.36 0.014 RMS y 0.01328 10⁴ 0.012 10³ 0.01 0.008 10² 0.006 10 0.004 E 0.002 1 0^L -0.5 0.3 90 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.4 10 20 30 40 50 60 70 80 axz2b daxz {(phi_p<70llphi_p>300)} daxz htemp htemp axz3b:th_p {axz3b>0&&(phi_p<70llphi_p>300)} Entries 356064 Entries 986091 **4**.35 1.755e-06 Mean -0.00437 Mean 10⁵ Е RMS 0.01823 RMS 0.01907 600 0.3 10⁴ 10⁴ 500 0.25 10 10³ 400 0.2 10² 300 0.15 10² 200 0.1 10 E 10 0.05 100 1 -0.1 1 -0.1 0 -0.05 0.05 -0.05 0.05 70 80 0.1 0.1 20 30 50 60 90 0 0 10 40 daxz daxz th_p

@ 49 MeV - Axz

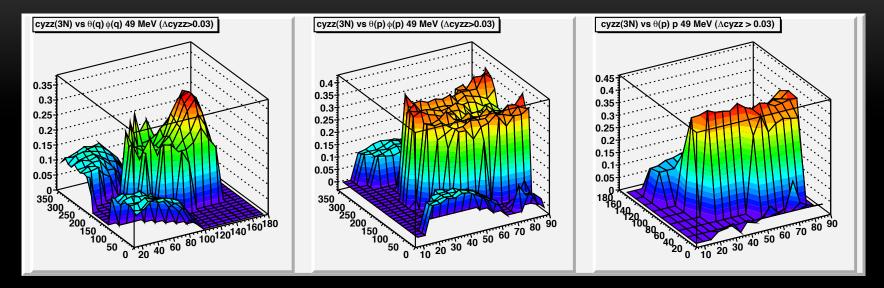


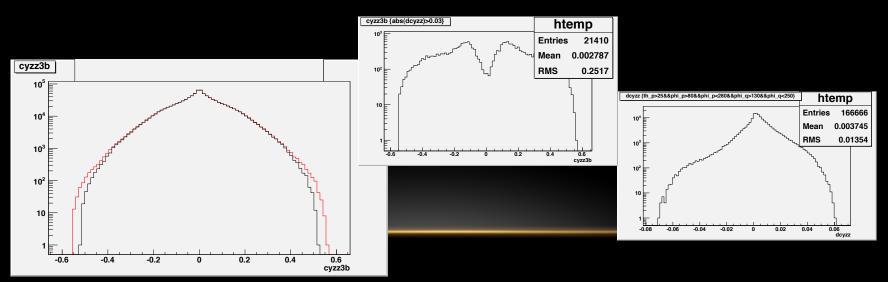
θq

0.12

0.11 0.1

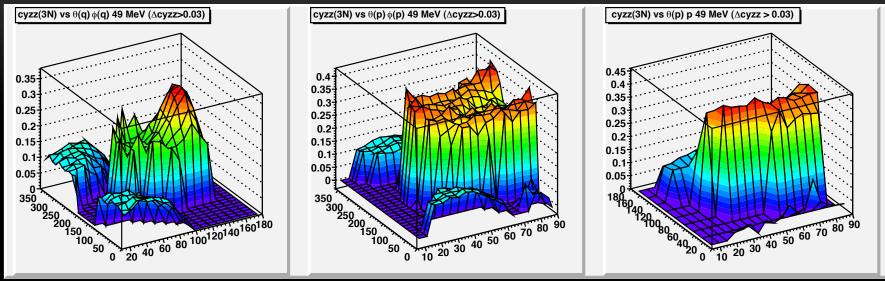
0.09 0.08

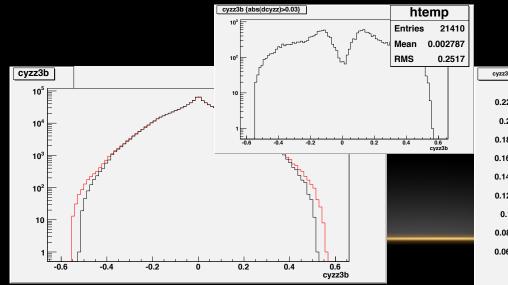

0.07

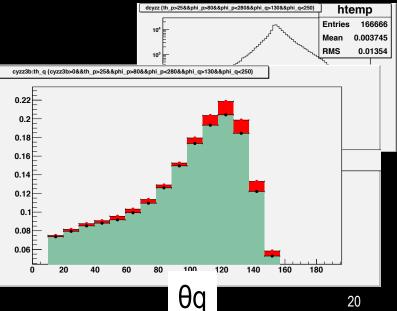

0.06 0.05

0.04

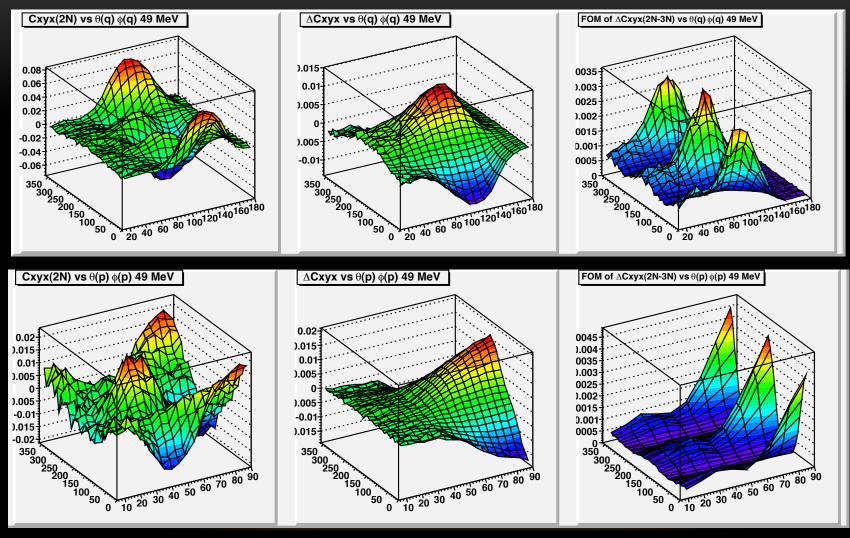
0

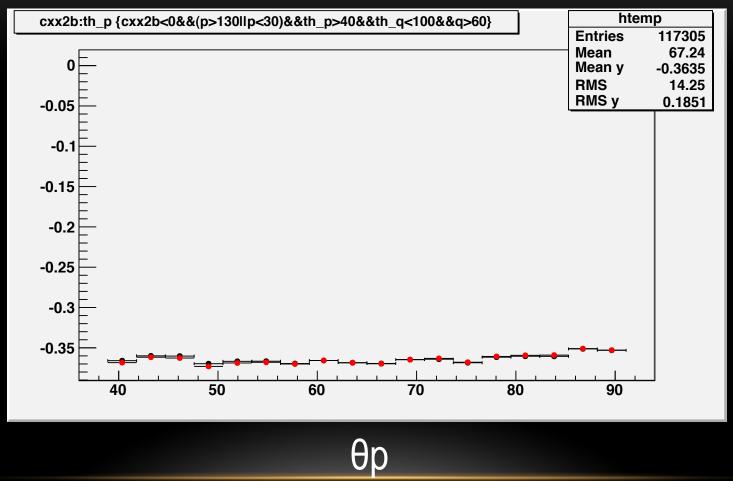

@ 49 MEV - CYZ,Z



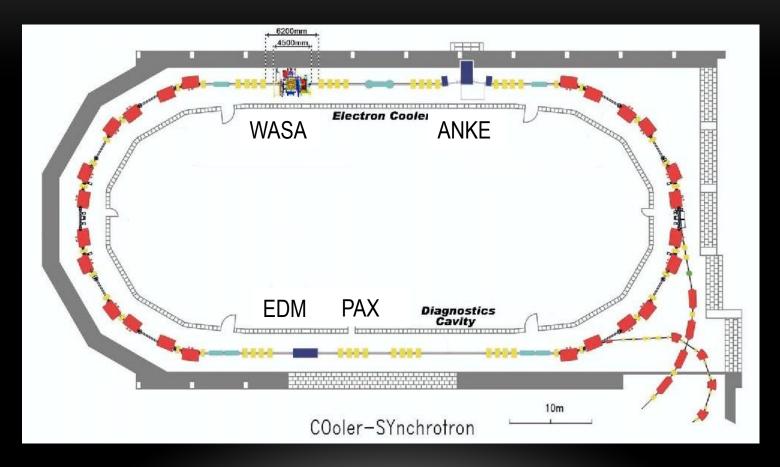


STORI'11 FRASCATI

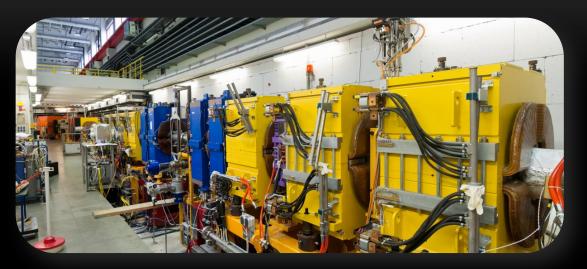


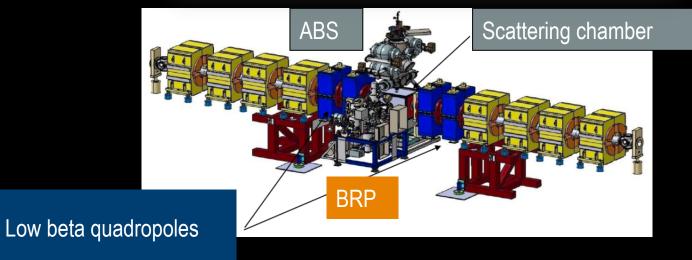


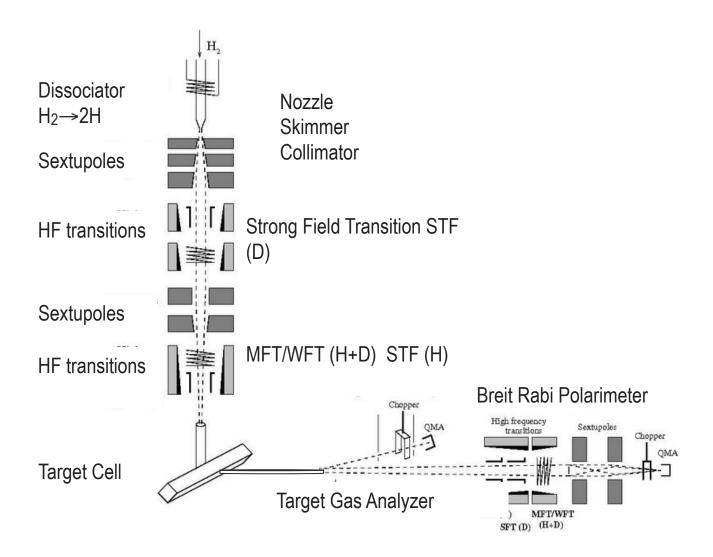
STORI'11 FRASCATI

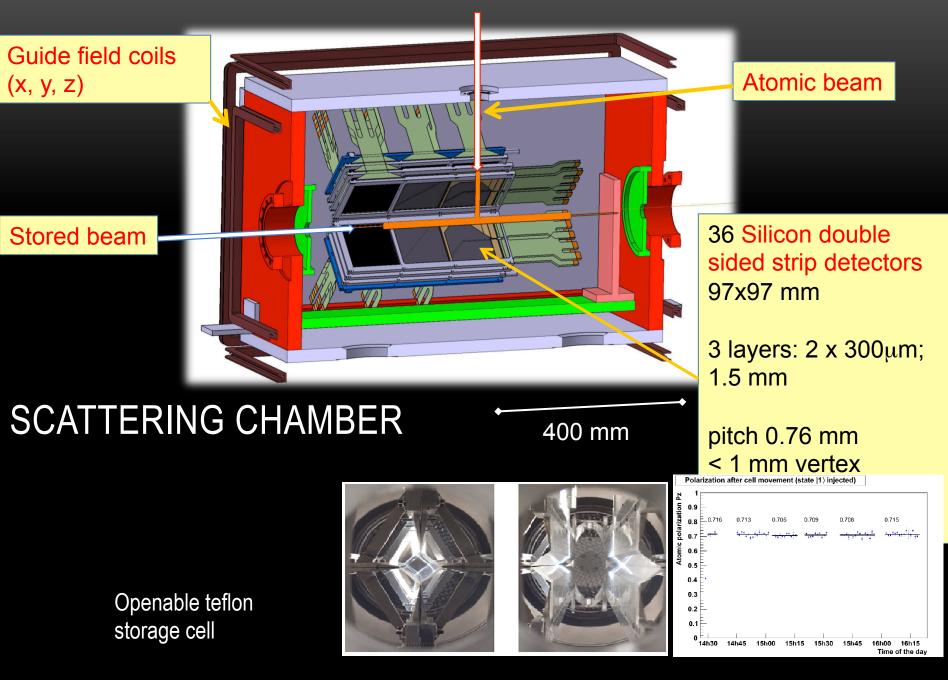

@49 MEV - CXY,X

@ 49 MEV – CXX VS ΘP


COSY – COOLER SYNCHROTRON AND STORAGE RING


inauguration of COSY in 1993


STORI'11 FRASCATI


EXPERIMENTAL SETUP

PAX interaction point

STORI'11 FRASCATI

BEAM TIME ESTIMATES

- Assumptions:
- statistical uncertainy of 0.002
- # stored polarized protons $\geq 10^9$
- target thickness of 5 · 1013
- duty factor of 0.9
- polarization of the beam $P \ge 0.5$
- target polarization $Q \approx 0.8$.
- # of events of the order of $5 \cdot 10^7$ with roughly 10^6 events per ten degree bin in the azimuthal angle φ .

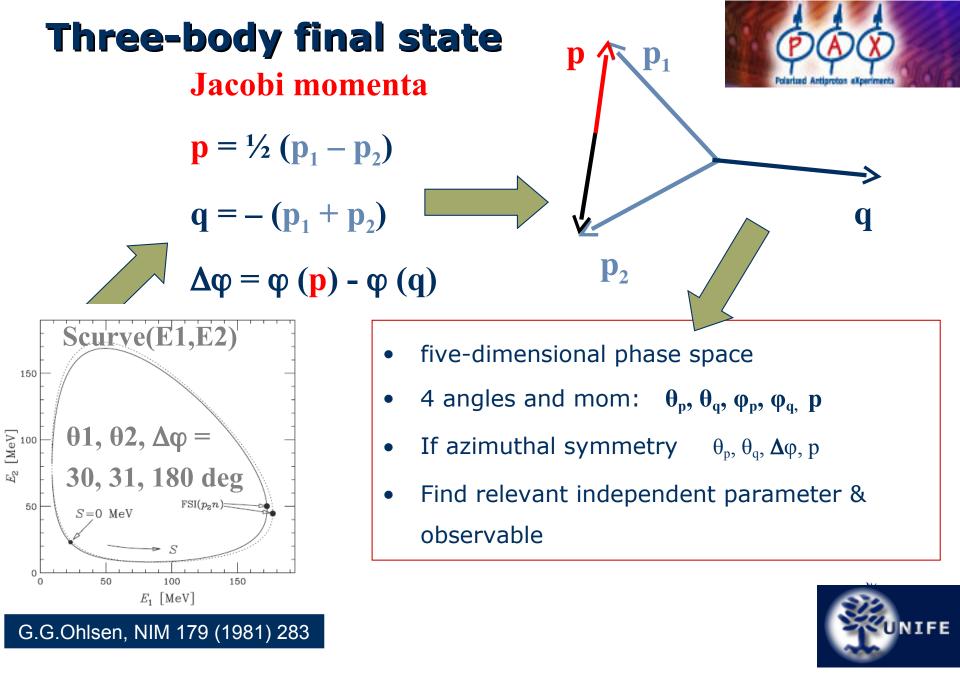
SUMMARY - TOTAL BEAM TIME

Polarized proton beam	49 MeV	30 MeV
σ _{tot} breakup	212.2 mb	145 mb
Acceptance	5 %	8 %
Measuring time	≥ 5 days/tgt scenario	≥ 3 days/tgt scenario
Beam time/energy	2 weeks	2 weeks

• With longitudinal and vertical beam polarization:

Four run periods of two weeks each, separated by at least four months.

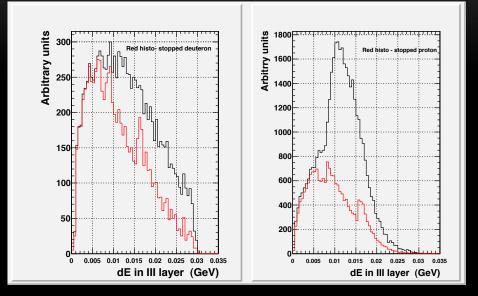
SUMMARY


- pd breakup at 30-50 MeV where few previous measurement exist
- Measure most observables with large phasespace coverage direct comparison of experiment & theory
- Would provide precise data for constraints of chiral EFT in a relevant energy range 30-50 MeV
 - Independent determination of Low Energy Constants *D* & *E*
 - New effects of 3NF that appear at N3LO can be accessed

More information:

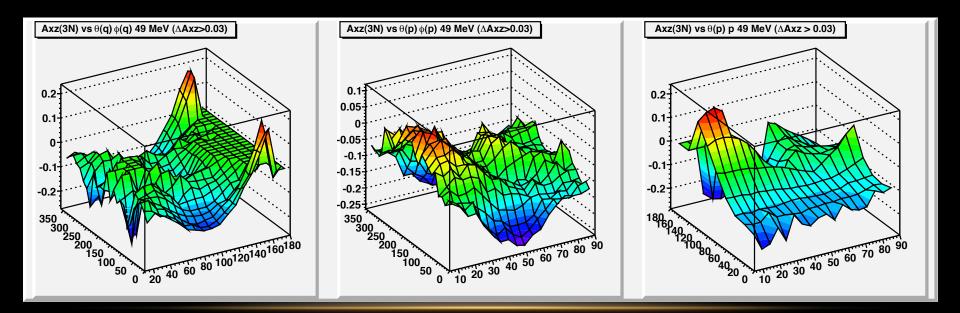
COSY Proposal 202, PTE et al., *Measurement of Spin Observables in the pd Breakup Reaction*, http://www2.fz-juelich.de/ikp/publications/PAC39/PAX_proposal202.1_202.pdf

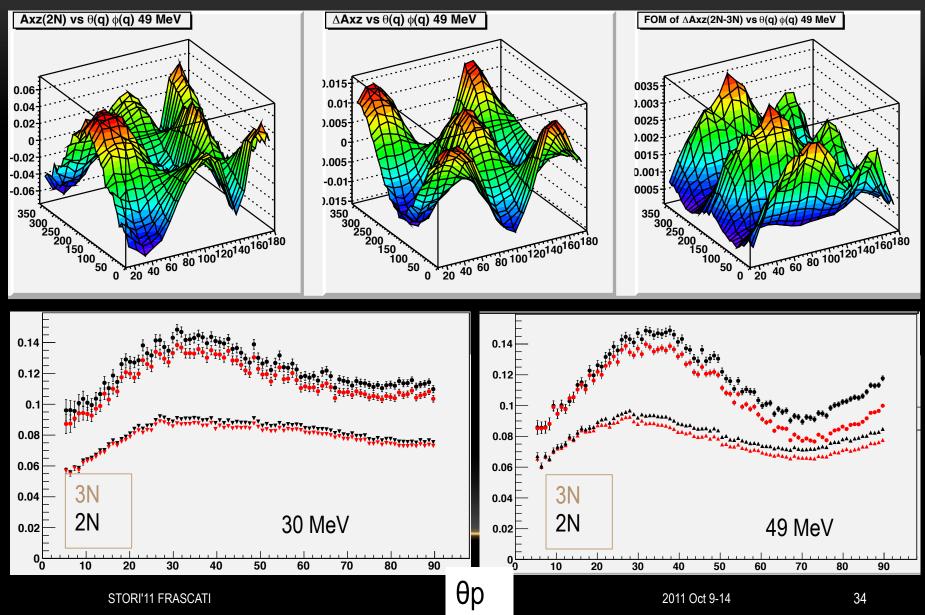
- Theory: E Epelbaum & A Nogga
- PAX Experiment: S Barsov, S Bertelli, M Contalbrigo, D Chiladze, A Kacharava, P Lenisa, N Lomidze, B Lorentz, G Macharashvili, S Merzlyakov, S Mikirtytchiants, A Nass, D Oellers, F Rathmann, Schleichert, H Ströher, PTE, M Tabidze, S Trusov, C Weidemann for PAX and ANKE Collaborations
- COSY accelerator group: D Prasuhn & B Lorentz et al.


Thank you for your attention!

Addition for bup Si 3rd layer 1.5 mm

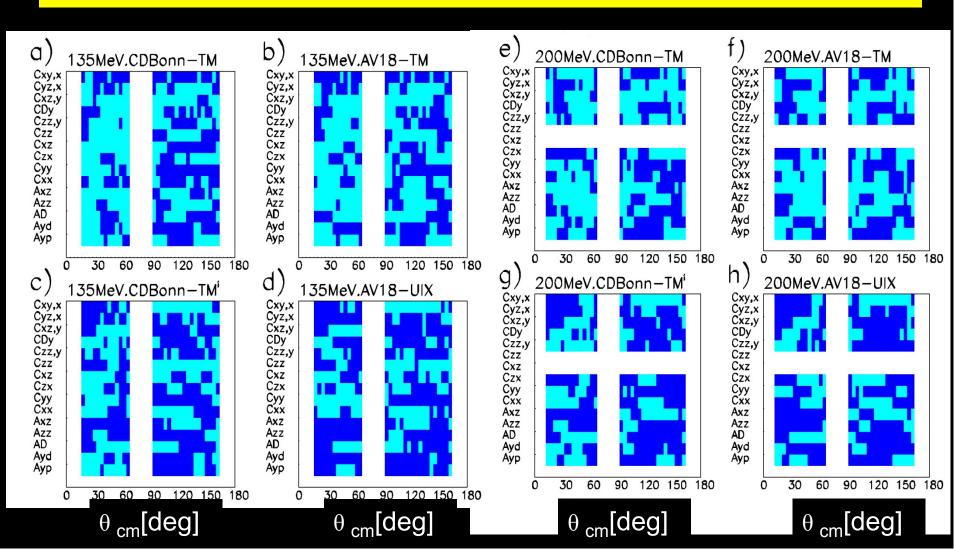
HERMES detector system:


A capacitor array was adopted to distribute the charge into a high gain and a low gain channel, thus they could read out energy deposits over a large dynamic range.

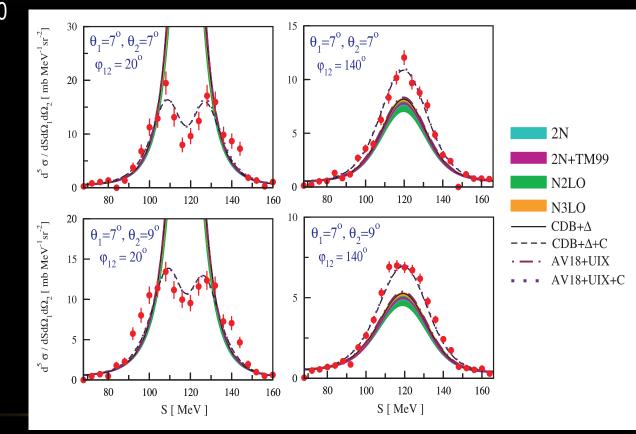

For PAX detectors:

capacitor-shunt to reduce the collected charge delivered to the chips.

Axz


AXZ

B.v. Przewoski et al., PRC 74, 064003 (2006), arXiv:nucl-ex/0411019


PD ELASTIC 135 & 200 MEV 3NFS

Each pixel corresponds to one of the 868 data points A pixel is colored **blue if 3NF improves the agreement**

1H(D,PP)N REACTION @KVI AT 65 MEV/A BUP CROSS SECTIONS

St Kistryn, E Stephan and N Kalantar-Nayestanaki SPIN 2010

