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Measure doubly polarized 
pd breakup reactions 
⤷ Low energy range 

30-50 MeV 
⤷ Large coverage 
⤷ High precision 

◈  3 Nucleon (3N) interaction ~ 0.5-1 MeV 
◈  3N effects vary with observable & kinematics 
◈  Ideal energy range for chiral  EFT to be valid 
◈  Few previous measurements exist 30-50 MeV 
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E Stephan, St Kistryn, N Kalantar-Nayestanaki, 
SPIN2010 

Tensor Analyzing Power Results
configurations with predicted strong 3NF effects

Tensor Analyzing Power Results
configurations with predicted strong 3NF effects

Stephan, University of Silesia, SPIN2010 

1H(d,pp)n Measurements at 130 and 100 MeV
Detection systems at KVI

140  E-E telescopes
3 plane MWPC

angular acceptance: 
= (12º, 38º), = (0º, 360º)

SALAD BINA

Wall - very similar to SALAD
Ball - system of phoswitch detectors

angular acceptance: nearly 4



Status 3n in pd breakup 

Figure from arXiv:1108.1227, N. Kalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp, A. Nogga 
Signatures of three-nucleon interactions in few-nucleon systems 
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Figure 23. Results of the calculations are subtracted from all corresponding data
points available in the literature for break-up reaction for the energy range of 65-190
MeV and various angle combinations and plotted, in the left panels, as a (relative)
difference between experimental data and calculations with only 2NF (x-axis) and
with 3NF in addition (y-axis). In the right panels, the differences between calculations
including a 3NF and the data are shown as a function of the relative energy of the two
outgoing protons. The top row shows the differences for cross sections, the second row,
for the proton analyzing power, and the third row, for the deuteron vector analyzing
power (color online).

fitted to the data. The size of the database and the accuracy of the data would then

determine how good our understanding of the underlying structure of 3NF is. Recent

analysis [243] shows that, once a large part of the phase space is covered, one has a tool
to study specific aspects such as the isospin dependence of 3NFs.

Major investments for more experiments in these systems would require theoretical

justifications. However, as was the case for the two-body system, the well-known
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Figure 24. Results of the calculations are subtracted from all corresponding
data points available in the literature for tensor analyzing powers of the proton-
deuteron break-up reaction. Presently, the database contains only a measurement
taken at 65 MeV/nucleon for various angular combinations. See Fig. 23 for a complete
description of the plots (color online).

parameters of two-nucleon forces were changed (albeit at a fine level) with the latest

experiments from IUCF [276] in the proton-proton system. The experimental and

theoretical developments should, therefore, go hand in hand. Following the success

in the two-body system, one obvious choice would be to perform a partial-wave analysis

in the three-body system. The major challenge in performing this task is, however, the
lack of an appropriate theoretical framework. A significant difference between the two-

body and three-body systems is the very low-energy threshold of 2.2 MeV which exists

in the latter system. Already above this energy, an asymptotic three-body state needs

to be formulated. This problem is not solved. Therefore, a PWA above this energy is

technically impossible at the present moment.

  65 MeV 
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Figure 24. Results of the calculations are subtracted from all corresponding
data points available in the literature for tensor analyzing powers of the proton-
deuteron break-up reaction. Presently, the database contains only a measurement
taken at 65 MeV/nucleon for various angular combinations. See Fig. 23 for a complete
description of the plots (color online).

parameters of two-nucleon forces were changed (albeit at a fine level) with the latest

experiments from IUCF [276] in the proton-proton system. The experimental and

theoretical developments should, therefore, go hand in hand. Following the success

in the two-body system, one obvious choice would be to perform a partial-wave analysis

in the three-body system. The major challenge in performing this task is, however, the
lack of an appropriate theoretical framework. A significant difference between the two-

body and three-body systems is the very low-energy threshold of 2.2 MeV which exists

in the latter system. Already above this energy, an asymptotic three-body state needs

to be formulated. This problem is not solved. Therefore, a PWA above this energy is
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Figure 23. Results of the calculations are subtracted from all corresponding data
points available in the literature for break-up reaction for the energy range of 65-190
MeV and various angle combinations and plotted, in the left panels, as a (relative)
difference between experimental data and calculations with only 2NF (x-axis) and
with 3NF in addition (y-axis). In the right panels, the differences between calculations
including a 3NF and the data are shown as a function of the relative energy of the two
outgoing protons. The top row shows the differences for cross sections, the second row,
for the proton analyzing power, and the third row, for the deuteron vector analyzing
power (color online).

fitted to the data. The size of the database and the accuracy of the data would then

determine how good our understanding of the underlying structure of 3NF is. Recent

analysis [243] shows that, once a large part of the phase space is covered, one has a tool
to study specific aspects such as the isospin dependence of 3NFs.

Major investments for more experiments in these systems would require theoretical

justifications. However, as was the case for the two-body system, the well-known
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Figure 23. Results of the calculations are subtracted from all corresponding data
points available in the literature for break-up reaction for the energy range of 65-190
MeV and various angle combinations and plotted, in the left panels, as a (relative)
difference between experimental data and calculations with only 2NF (x-axis) and
with 3NF in addition (y-axis). In the right panels, the differences between calculations
including a 3NF and the data are shown as a function of the relative energy of the two
outgoing protons. The top row shows the differences for cross sections, the second row,
for the proton analyzing power, and the third row, for the deuteron vector analyzing
power (color online).

fitted to the data. The size of the database and the accuracy of the data would then

determine how good our understanding of the underlying structure of 3NF is. Recent

analysis [243] shows that, once a large part of the phase space is covered, one has a tool
to study specific aspects such as the isospin dependence of 3NFs.

Major investments for more experiments in these systems would require theoretical

justifications. However, as was the case for the two-body system, the well-known
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1H(D,PP)N REACTION @KVI AT 65 MEV/A 
BUP CROSS SECTIONS 
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St Kistryn, E Stephan and N Kalantar-Nayestanaki 
SPIN 2010 

Figure 1. Relative discrepancies between the experimental data and the theoretical predictions
of the breakup cross sections as a function of the kinetic energy of the relative motion of the two
breakup protons. The results for the pure AV18 NN potential are shown in both panels as empty
circles. Left panel: Action of the UIX 3NF (triangles) and of the Coulomb force (squares), when
included individually with the AV18 in the calculations. Right panel: Combined action of the
above two effects (full dots).

The first calculations of the Coulomb force influences for the breakup reaction pointed to
some quite spectacular effects at small emission angles of the two protons. The cross section is
not only strongly suppressed but its distribution is distorted, with a local minimum enforced
in the middle of the S-range. This behavior has been confirmed by a subset of KVI data, for
configurations at the acceptance edge of the detection system [10].

To study this effects in some depth, a new experiment has been performed at the
Research Center Jülich (FZJ), using the deuteron beam of 130 MeV extracted from the COSY
synchrotron, and the detection system covering the range of very forward polar angles. The
cross section values have been obtained at almost 2400 points, with the upper angular limit
overlapping the acceptance of the KVI experiment. An excellent agreement between the
two data sets is achieved [11], although they stem from completely different measurements
and normalization procedures. Examples of the breakup cross section distributions at four
kinematical configurations, compared to various predictions, are shown in Fig. 2. Obviously,
only the approaches which do include the Coulomb interaction are able to correctly reproduce
the data. This agreement can be considered as a proof of certain maturity of including the
Coulomb force effects in the theoretical calculations.

3. Summary
Studies of the breakup reaction performed in a large part of the phase space are shedding light on
the role of various aspects of the 3N system dynamics. After the pioneering experiments, further
data sets are being acquired at several beam energies (see e.g. Ref. [13]). They present a general
success of modern calculations in describing the data, however, possibly complete theoretical
treatments, including all important ingredients (3NF, Coulomb interaction, relativistic effects),
as well as developments in ChPT are very important for better understanding of the three-
nucleon system dynamics.
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H.O. Meyer et al., Phys. Rev. Lett. 93, 112502 (2004), T.J. Whitaker IUCF PhD thesis 

cannot be measured with vertical deuteron spin
alignment.

By combining the yields measured with the appropriate
combinations of the five beam and six target polarization
states, individual terms in Eq. (1) are singled out. The
data are evaluated as a function of !!. The other three
kinematic variables are ignored; thus their full range
within the detector acceptance is included.

Figure 1 shows the longitudinal proton analyzing
power Az as a function of !!. This observable involves
longitudinal target polarization of both signs, combined
with an average over the five beam states, and thus
includes one-third of the breakup events collected in all
spin directions (about 5! 107). The axial vector correla-
tion coefficient (Cy;x " Cx;y) versus !!, which uses data
with a vector-polarized beam, combined with sideways
target polarization is shown in Fig. 2. Finally, Fig. 3
shows the tensor correlation coefficient Czz;z, which is
derived from the beam states with tensor polarization,
combined with longitudinal target polarization. As ex-
pected, all three axial observables presented here cross
zero at !! # 0 and !! # ", i.e., for coplanar final-state
configurations. The error bars shown represent statistical
uncertainties. An overall normalization uncertainty
arises from the determination of the beam and target
polarization (1.5% for Az and 4% for the other two
observables).

When comparing an experimental result with theory,
breakup reactions have the inherent problem that the
calculation has to be averaged over all kinematic varia-
bles that are not explicitly used in quoting a result. This

average has to be weighted by the cross section and the
probability that the detector registers an event at a given
point # in phase space. To do this is often difficult: for the
present experiment, for instance, the acceptance angle of
the detector depends on the location of the event along the
extended target, there is a lower limit for the energy of
protons that reach the trigger detector, the joints between
detector segments may locally reduce the efficiency, and
so on.

In order to take instrumental constraints into account
correctly, we have developed a new method [11], which is
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FIG. 1. Longitudinal proton analyzing power as a function of
!!. The solid and dashed curves are based on the CD-Bonn
and the AV18 NN interaction, respectively. When the TM0

three-nucleon potential is combined with the CD-Bonn inter-
action, the dotted curve results.
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FIG. 2. Vector correlation coefficient Cy;x " Cx;y as a function
of !!. The curves are explained in the caption for Fig. 1.
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u  At N3LO –  
u derived long-range contributions to 3NF 
u short-range contributions and the leading relativistic 

corrections to the three-nucleon force (3NF) 

V. Bernard, E. Epelbaum H. Krebs,Ulf-G. Meißner , Phys. Rev. C 77, 064004 (2008) 

” Subleading contributions to the chiral three-nucleon 
force II: short-range terms and relativistic corrections” 
V. Bernard, E. Epelbaum H. Krebs,Ulf-G. Meißner , 
arXiv:1108.3816v1 

BERNARD, EPELBAUM, KREBS, AND MEIßNER PHYSICAL REVIEW C 77, 064004 (2008)

(a) (b) (c) (d) (e)

FIG. 1. (Color online) Various topologies that appear in the 3NF at N3LO. Solid and dashed lines represent nucleons and pions, respectively.
Shaded blobs are the corresponding amplitudes. The long-range part of the 3NF considered in this paper consists of (a) 2π exchange graphs,
(b) 2π -1π diagrams, and (c) the so-called ring diagrams. The topologies (d) and (e) involve four-nucleon contact operators and are considered
of shorter range.

where the ci are low-energy constants and N, vµ, and Sµ denote
the large component of the nucleon field, the nucleons four-
velocity, and the covariant spin vector, respectively. We use
standard notation: U (x) = u2(x) collects the pion fields, uµ =
i(u†∂µu − u∂µu†),χ+ = u†χu† + uχ †u includes the explicit
chiral symmetry breaking resulting from the finite light quark
masses, 〈. . .〉 denotes a trace in flavor space, and Dµ is the
chiral covariant derivative for the nucleon field. Notice further
that the first terms in the expansion of U (π) in powers of the
pion fields read

U (π) = 1 + i

Fπ

τ · π − 1
2F 2

π

π2 − iα

F 3
π

(τ · π)3

+ 8α − 1
8F 4

π

π4 + · · · , (2.2)

where τ denote the Pauli isospin matrices and α is an arbitrary
constant. For further notation and discussion, we refer to
Ref. [20]; a recent review is given in Ref. [21]. Following
Weinberg [4,5], we define the dimension % of the Lagrangian
via

% = d + 1
2n − 2, (2.3)

where d and n are the number of derivatives or insertions of the
pion mass Mπ and nucleon field operators, respectively. The
pertinent low-energy constants (LECs) of the leading-order
effective Lagrangian are the nucleon axial-vector coupling
gA and the pion decay constant Fπ . Notice that although all
couplings and masses appearing in the effective Lagrangian
should, strictly speaking, be taken at their SU(2) chiral limit
values, to the accuracy we are working, we can use their
pertinent physical values. In addition, we have the LECs
d16, d18, and d̃28 from the πN Lagrangian at order % = 2. The
ellipses in the parentheses in the last line of Eq. (2.1) refer to
terms proportional to the LECs d1,2,3,5,14,15 and d̃24,26,27,28,30,
which generate ππNN vertices [20] but do not contribute to
the 3NF at N3LO as will be shown later. We also omit in
Eq. (2.1) pion vertices with % = 2 and proportional to the
LECs l3,4, which do not show up explicitly in the formulation
based on renormalized pion fields at the considered order; see
Ref. [22] for more details.

For a connected N -nucleon diagram with L loops and
Vi vertices of dimension %i , the irreducible contribution1

1This is the contribution that is not generated through iterations in
the dynamical equation and that gives rise to the nuclear force.

to the scattering amplitude scales as Qν , where Q is a
generic low-momentum scale associated with external nucleon
three-momenta or Mπ and

ν = −4 + 2N + 2L +
∑

i

Vi%i . (2.4)

Consequently, at N3LO, which corresponds to ν = 4, one
needs to take into account two classes of connected diagrams:
tree diagrams with one insertion of the % = 2 interactions
and one-loop graphs involving only lowest order vertices with
% = 0. Notice that it is not possible to draw 3N diagrams
with two insertions of % = 1 vertices at this order. We further
emphasize that similar to the case of the leading four-nucleon
force considered in Refs. [23,24], disconnected diagrams lead
to vanishing contributions to the 3NF and will not be discussed
in what follows.

The structure of the 3NF at N3LO is visualized in Fig. 1
and can be written as

V
(4)

3N = V
(4)

2π + V
(4)

2π-1π + V (4)
ring + V

(4)
1π-cont + V

(4)
2π-cont + V

(4)
1/m.

(2.5)

Whereas the 2π -1π , ring, and two-pion-exchange-contact
(2π -cont) topologies start to contribute at N3LO, the 2π and
one-pion-exchange-contact (1π -cont) graphs already appear at
N2LO, yielding the following contributions to the 3NF [6,8]:

V
(3)

2π = g2
A

8F 4
π

$σ1 · $q1 $σ3 · $q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
−4c1M

2
π + 2c3 $q1 · $q3

)
(2.6)

+ c4τ 1 × τ 3 · τ 2 $q1 × $q3 · $σ2
]
,

V
(3)

1π-cont = −gAD

8F 2
π

$σ3 · $q3

q2
3 + M2

π

τ 1 · τ 3 $σ1 · $q3,

where the subscripts refer to the nucleon labels and $qi = $p′
i −

$pi , with $p′
i and $pi being the final and initial momenta of the

nucleon i. Further, qi ≡ |$qi |, σi denote the Pauli spin matrices,
and D refers to the low-energy constant accompanying the
leading πNNNN vertex. Here and throughout this work, the
results are always given for a particular choice of nucleon
labels. The full expression for the 3NF results by taking into
account all possible permutations of the nucleons,2 that is,

V full
3N = V3N + all permutations. (2.7)

2For three nucleons there are altogether six permutations.

064004-2

Calculations soon ready 
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Table 3: Tabulated here are the 15 spin correlation observables and 7 analyzing powers

possible in proton deuteron breakup showing the required polarization alignment directions

of beam and target and some combinations thereof. For p (proton) and d (deuteron); U

means alignment up (vertical), S is sideways (parallell to the x-axis) and A is along the

beam direction (longitudinal).

The last two columns refer to the situation when the deuteron spin alignment axis is at

45 degrees which can be accomplished by running current through two guide field coils

simultaneously. With the longitudinal (±z) and vertical (±y) guide field coils on, denoted

dAU, and switched in ± polarity, four directions are achieved. Another four alignments are

obtained with the longitudinal and sideways (±x) combinations, denoted dAS. There are

five observables (here marked in bold font) that are parity forbidden in elastic scattering

and goes to zero in breakup reactions in coplanar kinematical configurations. In the

last two columns also a few observables are included requiring longitudinally polarized

beam. The tensor-vector correlation coefficient Cyz,z is accessible only using longitudinally

polarized beam and diagonal target spin alignment.

PolObs pU dU pU dS pU dA pA dU pA dS pA dA pU dAU pU dAS

Ay(p) X X X X X

Az(p) X X X pA dAU pA dAS
Ay(d) X X X X X X

Az(d) X X X X

Axx −Ayy X X X X X X

Azz X X X X X X X X

Axz X X

Cx,x + Cy,y X X

Cx,x − Cy,y X X X X

Cy,x −Cx,y X X

Cx,z X X pA dAU pA dAS
Cz,x X X X

Cz,z X pA dAU pA dAS
Cxx,y − Cyy,y X X X X

Cxz,x +Cyz,y X X

Czz,z X X X pA dAU pA dAS
Czz,y X X X X X

Cxy,x X X X X

Cxz,y X X

Cyz,x X X

Cxy,z X X pA dAU pA dAS
Cyz,z pA dAU pA dAS

15

Table 3: Tabulated here are the 15 spin correlation observables and 7 analyzing powers
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The Sampling Method (iv) 

! The # of occupied xi elements = the total # of events 
collected in the region ! during the experiment ! 

! The list of xi’s = the list of phase space coordinates for 
all collected events!!! 
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The theoretical calculation provides us with a value

( )at any point in phase space. For comparison with
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J.Kuros-Zolnierczuk, P.Thörngren, H.O. Meyer et al., FBS 34, 259 (2004), nucl-th/0402030 

x is the set of parameters needed to determine the kinematics, at any point of phase space 

! For a kinematically complete experiment: The 
correctly averaged theoretical value is the mean 
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! The error, the standard deviation that arises from the 
randomness of the experimental phase space points, 
is 

 

 
 
 
 

For a kinematically complete experiment, over some region γ of phase space  
 -  The correctly averaged theoretical value is the mean 

J. Kuros�-Żołnierczuk, P. Thörngren-Engblom, H.O. Meyer, T.J. Whitaker, H. Witała, J. Golak, H. 
Kamada, A. Nogga and R. Skibiński, Few-Body Systems 34, 259 (2004) 
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•  Theoretical framework & calculations: Epelbaum & Nogga 
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GRID SPACING 
p # of steps 20 
Θp # of steps 9 
Θp [deg] 5..90 
Θp # steps 18 
Θp [deg] 10..180 
φp,q # steps 37 
φp,q [deg] 0..360 
# of grid points 4,435,560 

Using the sampling method & phase space simulation  



@ 49 MEV - AXZ  
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@ 49 MeV - Axz 
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@ 49 MEV - CYZ,Z   
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COSY –  
COOLER SYNCHROTRON AND STORAGE RING 

inauguration of COSY in 1993 
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EDM PAX 

WASA ANKE 



EXPERIMENTAL SETUP 

PAX interaction point 
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Low beta quadropoles 
BRP 

ABS Scattering chamber 
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SCATTERING CHAMBER 400 mm 

Guide field coils 
(x, y, z) Atomic beam 

Stored beam 36 Silicon double 
sided strip detectors 
97x97 mm  
 
3 layers: 2 x 300µm; 
1.5 mm       
 
pitch 0.76 mm                                   
< 1 mm vertex 
reconstruction 
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reverse process, the depolarization of a polarized proton beam by a co-moving beam of 
electrons with a slight velocity difference corresponding to an energy for which the cross 
section for spin flip was expected to be advantageous. Our recently published experimental 
result24, (an upper limit of 107 b at a c.m. energy of 1 eV), disproved the former prediction by 
16 orders of magnitude25 and is in agreement with a recent theoretical calculations with lower 
cross sections. The former papers were withdrawn after the experimental upper limit became 
known, and a numerical error was corrected26. The conclusion is that the only viable method 
for polarizing a stored antiproton beam is through spin filtering. 
 
 

4.2.2.  Spin Filtering at COSY (Exp. No. 199) 
 

 At COSY the polarization build-up of a stored proton beam passing through a polarized 
internal target is pursued mainly to commission the equipment needed for the spin-filtering 
studies at the AD and to study machine-related effects in a storage ring. The transverse and 
the longitudinal spin-dependent total cross sections will be measured with high accuracy. 
Vacuum improvements, beam lifetime and acceptance studies have been carried out and a low 
! (0.3 m) section was recently installed and commissioned at COSY in order to optimize the 
conditions for filtering.  
 The experimental facility comprises an Atomic Beam Source (ABS) for producing the 
target gas, a so-called Breit-Rabi Polarimeter to measure the polarization of the target gas and 
an openable storage target cell. To this aim the HERMES target has been brought to COSY 
and a new openable storage cell has been designed and manufactured. The detector setup for 
the polarimeter is based on silicon strip detectors in a telescope arrangement.  
 In 2010 the target interaction region was commissioned and the openable storage target 
cell was installed, see Fig. 1. 
 

Paolo Lenisa and Frank Rathmann
(for the PAX collaboration) 
 

!

The measurement of the diffused sample of the gas from
after subsequent openings (see 
experiments in low-energy storage ring
significant increase in the luminosity

Figure 5: Left panel: front view of the openable storage cell in the closed and open
of the target polarization after various opening and closing procedures of the target cell: no change was evidenced. 

Summer 2010: installation of the PAX

In summer 2010, the PAX target 
the PAX interaction point at COSY (Fig

Figure 6: Left panel: PAX installation at the COSY ring. Shown in yellow are the existing COSY straight section 
quadrupole magnets. Four additional quadrupoles (blue) have been recuperated from the CELSIUS ring. The atomic 
beam source is mounted above the target chamber. 
panel: Picture of the PAX interaction region.

The PAX target chamber hosting the storage cell has been equipped with three sets of 
coils providing magnetic holding fields in 
and functionality, the coils have been mounted on the edges of the chamber

Paolo Lenisa and Frank Rathmann 

"!

The measurement of the diffused sample of the gas from the cell showed no loss of 
see Fig. 5). This result represents an important achievement for 

energy storage rings as the use of this kind of storage 
the luminosity. 

: front view of the openable storage cell in the closed and opened position. Right
of the target polarization after various opening and closing procedures of the target cell: no change was evidenced. 

Summer 2010: installation of the PAX experimental setup at the interaction region

 has been moved and installed, together with the target chamber, at 
COSY (Fig. 6).  

installation at the COSY ring. Shown in yellow are the existing COSY straight section 
quadrupole magnets. Four additional quadrupoles (blue) have been recuperated from the CELSIUS ring. The atomic 

nted above the target chamber. The Breit-Rabi polarimeter is mounted outwards of the ring.
icture of the PAX interaction region. 

The PAX target chamber hosting the storage cell has been equipped with three sets of 
coils providing magnetic holding fields in x, y and z direction. For reasons of space optimization 
and functionality, the coils have been mounted on the edges of the chamber (Fig. 7)

Jülich, 25.03.2011 

no loss of polarization 
an important achievement for all 

storage cell can lead to a 

 

d position. Right panel: behaviour 
of the target polarization after various opening and closing procedures of the target cell: no change was evidenced.  

interaction region 

been moved and installed, together with the target chamber, at 

 

installation at the COSY ring. Shown in yellow are the existing COSY straight section 
quadrupole magnets. Four additional quadrupoles (blue) have been recuperated from the CELSIUS ring. The atomic 

Rabi polarimeter is mounted outwards of the ring. Right 

The PAX target chamber hosting the storage cell has been equipped with three sets of Helmholtz 
direction. For reasons of space optimization 

(Fig. 7). 

  
Fig. 1 Left: Closed and opened storage target cell. Right: The polarization as measured by the 
BRP after open and closing of the cell, showing no change of polarization. 
 
 

4.2.3.  Spin filtering at AD 
 

 The AD ring is the only facility world wide that provides the possibility to do spin-
filtering experiments with antiprotons. At present there is virtually no knowledge of the spin 
dependence of the antiproton-proton interaction and the foreseen experiment opens up a 
whole new field in hadron physics. There is no certain theoretical estimate of the polarization 
buildup of a stored antiproton beam and the planned experiments at CERN are necessary for 
                                                             
24   D. Oellers et al., Phys. Lett. B, in press, arXiv:0902.1423 
25   A.I. Milstein, S.G. Salnikov, V.M. Strakhovenko, Nucl. Instr. Meth. B 266, 3453 (2008)  
26   H. Ahrenhövel, Eur. Phys. J. A. 39 (2009) 133, T. Walcher et al., Eur. Phys. J. A 39 (2009) 137 

Openable teflon 
storage cell 



BEAM TIME ESTIMATES 

•  Assumptions: 
•  statistical uncertainy of 0.002  
•  # stored polarized protons ≥ 109 

•  target thickness of 5 · 1013 
•  duty factor of 0.9 
•  polarization of the beam P ≥ 0.5 
•  target polarization Q ≈ 0.8.  
•  # of events of the order of 5 · 107 with roughly 106 events per ten 

degree bin in the azimuthal angle φ.  
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SUMMARY  - TOTAL BEAM TIME 
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Polarized proton beam 49 MeV 30 MeV 

σtot breakup 212.2 mb 145 mb 
Acceptance 5 % 8 % 

Measuring time ≥ 5 days/tgt scenario ≥ 3 days/tgt scenario 
Beam time/energy 2 weeks 2 weeks 

•  With longitudinal and vertical beam polarization: 

Four run periods of two weeks each, separated by at 
least four months. 



SUMMARY 

•  pd breakup at 30-50 MeV where few previous measurement exist 
•  Measure most observables with large phasespace coverage – 

direct comparison of experiment & theory  
➨ Would provide precise data for constraints of chiral EFT in a relevant 

energy range 30-50 MeV 
•  Independent determination of Low Energy Constants D & E 

•  New effects of 3NF that appear at N3LO can be accessed 
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More information: 
 COSY Proposal 202, PTE et al., Measurement of Spin Observables in the pd Breakup Reaction, 
http://www2.fz-juelich.de/ikp/publications/PAC39/PAX_proposal202.1_202.pdf 



•  Theory: E Epelbaum & A Nogga 
•  PAX Experiment: S Barsov, S Bertelli, M Contalbrigo, D Chiladze, 

A Kacharava, P Lenisa, N Lomidze, B Lorentz, G Macharashvili, S 
Merzlyakov, S Mikirtytchiants, A Nass, D Oellers, F Rathmann,            
Schleichert, H Ströher, PTE, M Tabidze, S Trusov, C Weidemann 
for PAX and ANKE Collaborations 

•  COSY accelerator group: D Prasuhn & B Lorentz et al. 

              Thank you for your attention! 
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Addition for bup 
Si 3rd layer 1.5 mm 

HERMES detector system:  

A capacitor array was adopted to 
distribute the charge into a high gain and 
a low gain channel, thus they could read 
out energy deposits over a large 
dynamic range. 

 

For PAX detectors: 

capacitor-shunt to reduce the collected 
charge delivered to the chips. 
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20 BUP Experiments at COSY

Figure 6: The developed electronic chain: in-vacuum boards with self-triggering chips

(left), front-end interface boards (center) and vertex board complete of 12 bit ADC and

sequencer (right).

better than 1 ns and able to provide a fast signal for triggering. The interface card outside

vacuum provides power supplies, control signals, trigger pattern threshold and calibration

pulse amplitudes to the front-end chips. The vertex board developed at Jülich comprises

a sequencer together with a 12 bit ADC with 10 MHz sampling; it allows common-mode

correction for hardware zero-suppression to reduce the output flow to 0.1 MByte/s with

less than 50 µs dead-time. A programmable trigger and a prescaler boards have been

developed for flexible trigger logic.

dE in III layer  (GeV)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
rb

itr
ar

y 
un

its

0

50

100

150

200

250

300
Red histo- stopped deuteron

dE in III layer  (GeV)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
rb

itr
ry

 u
ni

ts

0

200

400

600

800

1000

1200

1400

1600

1800

Red histo - stopped proton

Figure 7: Deposited energy in the third layer with thickness 1.5 mm by deuterons from

pd elastic reactions (left) and by the outgoing protons from pd breakup reactions (right)
at a proton beam energy of 49.3 MeV.

For the third thick detector layer required for stopping the outgoing protons modifi-

cations of the chips are needed in order to increase the dynamic range due to the higher

energy deposited by the protons. In the present experiment a maximum of 30 MeV is

deposited in the 1.5 mm thick silicon sensor, see Figs. 7 and 8. For the readout of the

HERMES type sensors that made up the Hermes Silicon Recoil Detector, a capacitor array

was adopted to distribute the charge into a high gain and a low gain channel, thus they

could read out energy deposits over a large dynamic range [63]. A similar technique could

be exploited here to enable the use of the existing VA32TA 2 chips with slight modifica-

tions for all three layers. This type of chips are presently in operation for the readout of

the ANKE STTs.
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Each pixel corresponds to one of the 868 data points      
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SPIN 2010 

Figure 2. Examples of the breakup cross section distributions for four kinematical
configurations (specified in the panels). Predictions obtained by various theoretical approaches
are shown as bands and lines (see legend).

The cross-section data are supplemented with equally large sets of various analyzing powers
and measurements of even higher-order polarization observables (see Refs. [14, 15] and references
therein). Certain discrepancies observed in those observables are hints of problems in the spin
(and isospin) part of the current models of 3NF. More experiments to study 3N system dynamics
are planned at several laboratories, including the next step – continuation of the few-body system
studies in the four-body environment.
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