EXTENSIVE HIGH PRECISION STUDIES OF PROTON DEUTERON BREAKUP REACTIONS @COSY

Pia Thöngren Engblom
for the PAX Collaboration
University of Ferrara
The Royal Technical High School, Stockholm

COSY proposal 202

$\diamond 3$ Nucleon (3N) interaction ~ 0.5-1 MeV

- 3N effects vary with observable \& kinematics
\diamond Ideal energy range for chiral EFT to be valid
\diamond Few previous measurements exist $30-50 \mathrm{MeV}$

Measure doubly polarized pd breakup reactions

Low energy range $30-50 \mathrm{MeV}$

Large coverage
High precision

TENSOR ANALYZING POWERS 50 MEV/A

E Stephan, St Kistryn, N Kalantar-Nayestanaki, SPIN2010

Figure from arXiv:1108.1227, N. Kalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp, A. Nogga Signatures of three-nucleon interactions in few-nucleon systems

Status $3 n$ in pd breakup

1H(D,PP)N REACTION @KVI AT 65 MEV/A BUP CROSS SECTIONS

St Kistryn, E Stephan and N Kalantar-Nayestanaki

SPIN 2010

H.O. Meyer et al., Phys. Rev. Lett. 93, 112502 (2004), T.J. Whitaker IUCF PhD thesis

STATUS 3N IN PD BREAKUP: 135 MEV/A

$\Delta \phi($ degrees $)$

Axial observables

MODERN THEORY OF NUCLEAR FORCES

Epelbaum, Prog. Part. Nucl. Phys. 57 (2006) 57
\checkmark Chiral effective field theory:
Systematic \& model independent framework for low-energy hadron physics
Few body forces enter naturally with increasing order
\checkmark At N2LO - first nonvanishing terms from the chiral Three-Nucleon Force (3NF)
Two-pion exchange One-pion exchange Contact interaction

MODERN THEORY OF NUCLEAR FORCES

At N3LO - V. Bernard, E. Epelbaum H. Krebs,Ulf-G. Meißner, Phys. Rev. C 77, 064004 (2008)
>derived long-range contributions to 3NF
> short-range contributions and the leading relativistic corrections to the three-nucleon force (3NF)

> "Subleading contributions to the chiral three-nucleon force II: short-range terms and relativistic corrections" V. Bernard, E. Epelbaum H. Krebs, Ulif-G. Meißner , arXiv:1108.3816v1

22 OBSERVABLES

$$
\begin{array}{r}
\sigma=\sigma_{0}\left(1+p_{y} A_{y}(p)+p_{z} A_{z}(p)+\frac{3}{2} q_{y} A_{y}(d)+\frac{3}{2} q_{z} A_{z}(d)\right. \\
+\frac{3}{4}\left(q_{x} p_{x}+q_{y} p_{y}\right)\left(C_{x, x}+C_{y, y}\right)+\frac{3}{4}\left(q_{x} p_{x}-q_{y} p_{y}\right)\left(C_{x, x}-C_{y, y}\right)+\frac{3}{4}\left(q_{y} p_{x}-q_{x} p_{y}\right)\left(C_{y, x}-C_{x, y}\right) \\
+\frac{3}{2} q_{x} p_{z} C_{x, z}+\frac{3}{2} q_{z} p_{x} C_{z, x}+\frac{3}{2} q_{z} p_{z} C_{z, z}+\frac{1}{6}\left(q_{x x}-q_{y y}\right)\left(A_{x x}-A_{y y}\right)+\frac{1}{2} q_{z z} A_{z z}+\frac{2}{3} q_{x z} A_{x z} \\
+\frac{1}{6}\left(q_{x x}-q_{y y}\right) p_{y}\left(C_{x x, y}-C_{y y, y}\right)+\frac{1}{2} q_{z z} p_{z} C_{z z, z}+\frac{1}{2} q_{z z} p_{y} C z z, y+\frac{2}{3} q_{x y} p_{x} C_{x y, x}+\frac{2}{3} q_{x z} p_{y} C_{x z, y}+\frac{2}{3} q_{y z} p_{x} C_{y z, x} \\
\left.+\frac{2}{3} q_{x y} p_{z} C_{x y, z}+\frac{2}{3} q_{y z} p_{z} C_{y z, z}+\frac{1}{3}\left(q_{x z} p_{x}+q_{y z} p_{y}\right)\left(C_{x z, x}+C_{y z, y}\right)\right)
\end{array}
$$

PolObs	$p \mathrm{U} d \mathrm{U}$	$p \mathrm{U} d \mathrm{~S}$	$p \mathrm{U} d \mathrm{~A}$	$p \mathrm{~A} d \mathrm{U}$	$p \mathrm{~A} d \mathrm{~S}$	$p \mathrm{~A} d \mathrm{~A}$	$p \mathrm{U} d \mathrm{AU}$	$p \mathrm{U} d \mathrm{AS}$
$A_{y}(p)$	X	X	X				X	X
$\mathbf{A}_{\mathbf{z}}(\mathbf{p})$				X	X	X	$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$A_{y}(d)$	X	X		X	X		X	X
$\mathbf{A}_{\mathbf{z}}(\mathbf{d})$			X			X	X	X
$A_{x x}-A_{y y}$	X	X		X	X		X	X
$A_{z z}$	X	X	X	X	X	X	X	X
$A_{x z}$							X	X

$C_{x, x}+C_{y, y}$	X						X	
$C_{x, x}-C_{y, y}$	X	X					X	X
$\mathbf{C}_{\mathbf{y}, \mathbf{x}}-\mathbf{C}_{\mathbf{x}, \mathbf{y}}$		X						X
$C_{x, z}$				X	X		$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{z, x}$			X				X	X
$C_{z, z}$						X	$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$

$C_{x x, y}-C_{y y, y}$	X	X					X	X
$\mathbf{C}_{\mathbf{x z}, \mathbf{x}}+\mathbf{C}_{\mathbf{y z}, \mathbf{y}}$						X	X	
$\mathbf{C}_{\mathbf{z z}, \mathbf{z}}$				X	X	X	$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{z z, y}$	X	X	X				X	X
$C_{x y, x}$	X	X					X	X
$C_{x z, y}$							X	X
$C_{y z, x}$							X	X
$C_{x y, z}$				X	X		$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{y z, z}$							$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$

PolObs	$p \mathrm{U} d \mathrm{U}$	$p \mathrm{U} d \mathrm{~S}$	$p \mathrm{U} d \mathrm{~A}$	$p \mathrm{~A} d \mathrm{U}$	$p \mathrm{~A} d \mathrm{~S}$	$p \mathrm{~A} \mathrm{~d} \mathrm{~A}$	$p \mathrm{U} d \mathrm{AU}$	$p \mathrm{U} d \mathrm{AS}$
$A_{y}(p)$	X	X	X				X	X
$\mathbf{A}_{\mathbf{z}}(\mathbf{p})$				X	X	X	$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$A_{y}($ d $)$	X	X		X	X		X	X
$\mathbf{A}_{\mathbf{z}}(\mathbf{d})$			X			X	X	X
$A_{x x}-A_{y y}$	X	X		X	X		X	X
$A_{z z}$	X	X	X	X	X	X	X	X
$A_{x z}$							X	X
$C_{x, x}+C_{y, y}$	X						X	
$C_{x, x}-C_{y, y}$	X	X					X	X
$\mathbf{C}_{\mathbf{y}, \mathbf{x}}-\mathbf{C}_{\mathbf{x}, \mathbf{y}}$		X						X
$C_{x, z}$				X	X		$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{z, x}$			X				X	X
$C_{z, z}$						X	$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{x x, y}-C_{y y, y}$	X	X					X	X
$\mathrm{C}_{\mathrm{xz}, \mathrm{x}}+\mathrm{C}_{\mathrm{yz}, \mathrm{y}}$						X	X	
$\mathrm{C}_{\mathbf{z z}, \mathbf{z}}$				X	X	X	$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{z z, y}$	X	X	X				X	X
$C_{x y, x}$	X	X					X	X
$C_{x z, y}$							X	X
$C_{y z, x}$							X	X
$C_{x y, z}$				X	X		$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} d \mathrm{AS}$
$C_{y z, z}$							$p \mathrm{~A} d \mathrm{AU}$	$p \mathrm{~A} \mathrm{~d} \mathrm{AS}$

A SAMPLING METHOD TO COMPARE WITH THEORY

x is the set of parameters needed to determine the kinematics, at any point of phase space
$O^{t h}(x)=\frac{\int \sigma_{0}(x) \varepsilon(x) O^{t h}(x) d x}{\int \sigma_{0}(x) \varepsilon(x) d x}$

For a kinematically complete experiment, over some region γ of phase space

- The correctly averaged theoretical value is the mean

$$
O^{t h}(\gamma)=\left\langle O^{t h}\right\rangle=\frac{\sum O^{t h}\left(x_{k}\right)}{N(\gamma)}
$$

J. Kuros -Żolnierczuk, P. Thörngren-Engblom, H.O. Meyer, T.J. Whitaker, H. Witała, J. Golak, H. Kamada, A. Nogga and R. Skibiński, Few-Body Systems 34, 259 (2004)

A METHOD TO COMPARE BUP WITH THEORY

x is the set of parameters needed to determine the kinematics, at any point of phase space
$O^{t h}(x)=\frac{\int \sigma_{0}(x) \varepsilon(x) O^{t h}(x) d x}{\int \sigma_{0}(x)}$

For a kinematically complêc

- The correctly averaged theoreticar
from a rof phase space

$$
O^{t h}(\gamma)=\left\langle O^{t h}\right\rangle=\frac{\sum O^{t h}\left(x_{k}\right)}{N(\gamma)}
$$

J. Kuros -Żołnierczuk, P. Thörngren-Engblom, H.O. Meyer, T.J. Whitaker, H. Witała, J. Golak, H. Kamada, A. Nogga and R. Skibiński, Few-Body Systems 34, 259 (2004)

GRID EXAMPLES

- Theoretical framework \& calculations: Epelbaum \& Nogga

GRID SPACING

p \# of steps	20
$\Theta p \#$ of steps	9
Θp [deg]	$5 . .90$
$\Theta p \#$ steps	18
Θp [deg]	$10 . .180$
$\varphi p, q$ \# steps	37
$\varphi p, q$ [deg]	$0 . .360$
$\#$ of grid points	$4,435,560$

Using the sampling method \& phase space simulation

@ 49 MEV - AXZ

@ 49 MeV - Axz

$\Delta \mathbf{A x z}$ vs $\theta(\mathbf{p}) \phi(\mathbf{p}) 49 \mathrm{MeV}$

FOM of $\triangle A x z(2 N-3 N)$ vs $\theta(\mathbf{p}) \phi(\mathbf{p}) 49 \mathrm{MeV}$

@ 49 MEV - AXZ VS OQ

θq

@ 49 MEV - CYY,Y

日q

@ 49 MEV - CYZ,Z

@ 49 MEV - CYZ,Z

@49 MEV - CXY,X

@ 49 MEV - CXX VS OP

θ p

COSY -

COOLER SYNCHROTRON AND STORAGE RING

inauguration of COSY in 1993

EXPERIMENTAL SETUP

PAX interaction point

Guide field coils

36 Silicon double sided strip detectors 97x97 mm

SCATTERING CHAMBER

3 layers: $2 \times 300 \mu \mathrm{~m}$; 1.5 mm
pitch 0.76 mm < 1 mm vertex
reconstruction

Openable teflon storage cell

BEAM TIME ESTIMATES

- Assumptions:
- statistical uncertainy of 0.002
- \# stored polarized protons $\geq 10^{9}$
- target thickness of 5 - 1013
- duty factor of 0.9
- polarization of the beam $P \geq 0.5$
- target polarization $\mathrm{Q} \approx 0.8$.
- \# of events of the order of $5 \cdot 10^{7}$ with roughly 10^{6} events per ten degree bin in the azimuthal angle φ.

SUMMARY - TOTAL BEAM TIME

Polarized proton beam	49 MeV	30 MeV
$\sigma_{\text {tot }}$ breakup	212.2 mb	145 mb
Acceptance	5%	8%
Measuring time	≥ 5 days/tgt scenario	≥ 3 days/tgt scenario
Beam time/energy	2 weeks	2 weeks

- With longitudinal and vertical beam polarization:

Four run periods of two weeks each, separated by at least four months.

SUMMARY

- pd breakup at 30-50 MeV where few previous measurement exist
- Measure most observables with large phasespace coverage direct comparison of experiment \& theory
\Rightarrow Would provide precise data for constraints of chiral EFT in a relevant energy range $30-50 \mathrm{MeV}$
- Independent determination of Low Energy Constants D \& E
- New effects of 3NF that appear at N3LO can be accessed

More information:
COSY Proposal 202, PTE et al., Measurement of Spin Observables in the pd Breakup Reaction, http://www2.fz-juelich.de//kp/publications/PAC39/PAX_proposal202.1_202.pdf

- Theory: E Epelbaum \& A Nogga
- PAX Experiment: S Barsov, S Bertelli, M Contalbrigo, D Chiladze, A Kacharava, P Lenisa, N Lomidze, B Lorentz, G Macharashvili, S Merzlyakov, S Mikirtytchiants, A Nass, D Oellers, F Rathmann, Schleichert, H Ströher, PTE, M Tabidze, S Trusov, C Weidemann for PAX and ANKE Collaborations
- COSY accelerator group: D Prasuhn \& B Lorentz et al.

Thank you for your attention!

Three-body final state

Jacobi momenta

$$
\begin{aligned}
& \mathbf{p}=1 / 2\left(p_{1}-p_{2}\right) \\
& \mathbf{q}=-\left(p_{1}+p_{2}\right)
\end{aligned}
$$

$$
\Delta \varphi=\varphi(\mathrm{p})-\varphi(\mathrm{q})
$$

- five-dimensional phase space
- 4 angles and mom: $\boldsymbol{\theta}_{\mathrm{p}}, \boldsymbol{\theta}_{\mathrm{q}}, \boldsymbol{\varphi}_{\mathrm{p}}, \boldsymbol{\varphi}_{\mathrm{q}}, \mathbf{p}$
- If azimuthal symmetry $\theta_{\mathrm{p}}, \theta_{\mathrm{q}}, \Delta \varphi, \mathrm{p}$
- Find relevant independent parameter \& observable

Addition for bup

HERMES detector system:
A capacitor array was adopted to distribute the charge into a high gain and a low gain channel, thus they could read out energy deposits over a large dynamic range.

For PAX detectors:
capacitor-shunt to reduce the collected charge delivered to the chips.

Axz

AXZ

B.v. Przewoski et al., PRC 74, 064003 (2006), arXiv:nucl-ex/0411019

PD ELASTIC 135 \& 200 MEV 3NFS

Each pixel corresponds to one of the 868 data points A pixel is colored blue if $3 N F$ improves the agreement

1H(D,PP)N REACTION @KVI AT 65 MEV/A BUP CROSS SECTIONS

St Kistryn, E Stephan and N Kalantar-Nayestanaki

SPIN 2010

