KLOE measurement of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ with Initial State Radiation and its contribution to the muon (g-2)

Giuseppe Mandaglio (for the KLOE/KLOE-2 collaboration) University of Messina & INFN Sez. Catania

STORI11, LNF- FRASCATI, October 13th 2011

Outlook

RLOR KLOR

- * Motivation
- * KLOE measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$
 - and Evaluation of $a_{\mu}^{\pi\pi}$

Normalized to Bhabha events:

- Small (photon) angle measurements (KLOE05, KLOE08)
- Large (photon) angle measurement (KLOE10)
 Normalized to μμγ events (NEW!):
- Small (photon) angle measurements(KLOE11, preliminary)
 Comparison btw KLOE11 and KLOE08, KLOE10
- * Conclusion

Motivation

The muon anomaly $a_{\mu} = (g_{\mu} - 2)/2$ is one of the most precisely measured quantity in particle physics.

Latest BNL-2004 $a_{\!_{\mu}}$ measurement shows a discrepancy of ~3 σ with SM prediction

Is it this discrepancy the sign of "missing piece" - new physics?

This question stimulated many theoretical and experimental efforts !

The main uncertainty in the estimate of theoretical prediction is due to low energy hadron contribution

This uncertainty can be substantially reduced by hadronic cross section measurements in electron-positron annihilation at low energy.

a_u comparison Exp & Theo

F. Jegerlehner, A. Nyffeler / Physics Reports 477 (2009) 1–110

Standard model theory and experiment comparison [in units 10⁻¹¹].

Contribution	Value	Error
QED incl. 4-loops + LO 5-loops	116584718.1	0.2
Leading hadronic vacuum polarization	6 903.0	52.6
Subleading hadronic vacuum polarization	-100.3	1.1
Hadronic light-by-light	116.0	39.0
Weak incl. 2-loops	153.2	1.8
Theory	116 591 790.0	64.6
Experiment	116 592 080.0	63.0
Exp The. 3.2 standard deviations	290.0	90.3

$$\begin{array}{c|c} (27.7 \pm 8.4) & 10^{-10} & \text{Eidelman TAU08} \\ (24.6 \pm 8.0) & 10^{-10} & \text{Davier et al. arXiv: 0908.4128} \\ \hline 8.4 \approx & 5_{\text{HLO}} & \oplus 3_{\text{LBI}} \oplus 6_{\text{BNII}} \end{array}$$

$$a_{\mu}^{Exp} - a_{\mu}^{Theo} = (27.6 \pm 8.7) \times 10^{-10} \sim 3.4 \sigma$$

Is an hint of new physics ...

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr}) PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 ~3 σ discrepancy btw a_u^{SM} and a_u^{exp}

DA Φ NE: A Φ -Factory

e^+e^- - collider with $\sqrt{s} = m_{\Phi} \approx 1.0195$ GeV

Integrated Luminosity

Peak Luminosity Lpeak= 1.5 • 10³²cm⁻²s⁻¹

KLOE05 measurement (PLB606(2005)12) was based on 140pb⁻¹ of 2001 data!

KLOE08 measurement (PLB670(2009)285) was based on 240pb⁻¹ from 2002 data!

2006:

- Energy scan (4 points around $m\Phi$ -peak)

▲ 240 pb⁻¹ at = 1000 MeV (off-peak data)

KLOE10 measurement (PLB700 (2011)102) based on 233 pb⁻¹ of 2006 data (at 1 GeV, different event selection)

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90° tracks) $\sigma_{xv} \approx 150 \text{ mm}, \sigma_z \approx 2 \text{ mm}$

Excellent momentum resolution

Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC4H10

KLOE Detector

Electromagnetic Calorimeter

 $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ $\sigma_{\rm T}$ = 54 ps / $\sqrt{\rm E(GeV)}$ \oplus 100 ps (Bunch length contribution subtracted from constant term) Excellent timing resolution

Pb / scintillating fibres (**4880 PMT**) Endcap - Barrel - Modules

Extracting $\sigma_{\pi\pi}$ and $|F_{\pi}|^2$ from $\pi\pi\gamma$ events

a) Via absolute Normalisation to Bhabha events (KLOE05,08,10):

1)
$$\frac{d\sigma_{_{\pi\pi\gamma(\gamma)}}^{obs}}{dM_{_{\pi\pi}}^{2}} = \frac{\Delta N_{\rm Obs} - \Delta N_{\rm Bkg}}{\Delta M_{_{\pi\pi}}^{2}} \cdot \frac{1}{\varepsilon_{\rm Sel}} \cdot \frac{1}{\int Ldt}$$

2)
$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma_{\pi\pi\gamma(\gamma)}^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$

3)
$$\left| \mathbf{F}_{\pi} \right|^{2} = \frac{3s}{\pi \alpha^{2} \beta_{\pi}^{3}} \sigma_{\pi\pi}(s)$$

 $d\sigma_{\pi\pi\gamma}(\gamma)/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int*. *Iuminosity*:

Obtain $\sigma_{\pi\pi}$ from (ISR) radiative cross section $d\sigma^{\pi\pi\gamma}(\gamma)/dM^2$ via theoretical radiator function H(s):

Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

b) Via bin-by-bin Normalisation to rad. Muon events (New measurement!)

Radiative Corrections

K OF

Radiator-Function H(s,s_p) (ISR):

- ISR-Process calculated at NLO-level

PHOKHARA generator (H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003)

Precision: 0.5%

$$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times H(s,s_{\pi})$$

Radiative Corrections:

i) Bare Cross Section

divide by Vacuum Polarisation $d(s)=(a(s)/a(0))^2$

→ from F. Jegerlehner

ii) FSR

Cross section \mathbf{s}_{pp} must be incl. for FSR for use in the dispersion integral of a_m

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the mapping $s_{\pi} \rightarrow s_{\gamma*}$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

- a) 2 tracks with 50° < θ_{track} < 130°
- b) small angle (not detected) γ
- c) ($\theta_{\pi\pi} < 15^{\circ} \text{ or } > 165^{\circ}$)
 - high statistics for ISR
 - · low relative FSR contribution

 $_{x\ 10\ ^2}$ \checkmark suppressed φ —> $\pi^+\pi^-\pi^0~$ wrt the signal

kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$

statistics: 240pb⁻¹ of 2002 data 3.1 Mill. Events between 0.35 and 0.95 GeV²

SA Kloe result (KLOE08)

Systematic errors on $a_{u}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$

$$a_{\mu}^{\pi\pi} = \int_{x1}^{x2} \sigma_{ee \to \pi\pi}(s) K(s) ds$$

 $\sigma_{\pi\pi}$, undressed from VP, inclusive for FSR as function of $(M_0^{\pi\pi})^2$

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^{\circ} < \theta\pi < 130^{\circ}$

Photons at large angles

50° < θγ < 130° [·] independent complementary analysis [·] threshold region (2m_π)² accessible [·]γISR photon detected (4-momentum constraints)

- ✓ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- $^{\prime}$ irreducible background from ϕ decays ($\phi \rightarrow f^{0} \gamma \rightarrow \pi \pi \gamma$)

Threshold region non-trivial due to irreducible FSReffects, which have to be estimated from MC using phenomenological models (interference effects unknown)

At least 1 photon with $50^{\circ} < \theta\gamma < 130^{\circ}$ and E_{γ} >20 MeV => photon detected

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^{\circ} < \theta \pi < 130^{\circ}$ Photons at large angles $50^{\circ} < \theta \gamma < 130^{\circ}$ \cdot independent complementary analysis

threshold region $(2m_π)^2$ accessible γISR photon detected

(4-momentum constraints)

- · lower signal statistics
- Iarger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- · irreducible background from ϕ decays ($\phi \rightarrow$ f0 $\gamma \rightarrow \pi\pi \gamma$)

At least 1 photon with $50^{\circ} < \theta \gamma < 130^{\circ}$ and E γ > 20 MeV -> photon detected

Use data sample taken at $\sqrt{s} \cong 1000 \text{ MeV}$, 20 MeV below the ϕ -peak

KLOE10: Pion Form Factor

Table of systematic errors on $a_{\mu}^{\pi\pi}(0.1-0.85 \text{ GeV}^2)$:

Reconstruction Filter	negligible	
Background	0.5%	
$f0+ ho\pi$	0.4%	
Ω cut	0.2%	
Trackmass	0.5%	
p/e-ID and TCA	negligible	
Tracking	0.3%	
Trigger	0.2%	
Acceptance	0.5%	
Unfolding	negligible	
Software Trigger	0.1%	
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%	
experimental fractional error on $a_{\mu} = 1.0$ %		
FSR treatment	0.8%	

Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.9 \%$

a_u^{ππ}(0.1-0.85 GeV²) = (478.5 ± 2.0 stat ± 5.0 sys ± 4.5 theo) · 10⁻¹⁰

KLOE08 result compared to KLOE10:

Fractional difference:

Excellent agreement with KLOE08, expecially above 0.5 GeV²

Combination of KLOE08 and KLOE10: $a_{\mu}^{\pi\pi}$ (0.1-0.95 GeV²) = (488.6±6.0) · 10⁻¹⁰

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional total error of 1.2%

Comparison of results: KLOE10 vs CMD-2/SND

CMD and SND results compared to KLOE10: Fractional difference

band: KLOE10 error

Below the *ρ* peak good agreement with CMD-2/SND. Above the *ρ* peak KLOE10 slightly lower (as KLOE08)

Comparison of results: KLOE10 vs BaBar

KLOE S

BaBar results compared to KLOE10: Fractional difference

band: KLOE10 error

Agreement within errors below 0.6 GeV; BaBar higher by 2-3% above

New $\sigma_{\pi\pi}$ measurement from π/μ

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion

over muon yields (instead of using absolute normalization with Bhabhas).

meas.

quantities

$$F_{\pi}(s')\Big|^{2} \approx \frac{4\left(1+2m_{\mu}^{2}/s'\right)\beta_{\mu}}{\beta_{\pi}^{3}} - \frac{d\sigma_{\pi\pi\gamma}/ds}{d\sigma_{\mu\mu\gamma}/ds}$$

Many radiative corrections drop out:

- [.] radiator function
- [.] int. luminosity from Bhabhas
- · Vacuum polarization

$$\left(\sqrt{s} - \sqrt{|p_{+}|^{2} + M_{trk}^{2}} - \sqrt{|p_{-}|^{2} + M_{trk}^{2}}\right)^{2} - (p_{+} + p_{-})^{2} = 0$$

Separation btw $\pi\pi\gamma$ and $\mu\mu\gamma$ using M_{TRK} \cdot muons: $M_{Trk} < 115$ MeV \cdot pions : $M_{Trk} > 130$ MeV Very important control of π/μ separation in the ρ region! ($\sigma_{\pi\pi} >> \sigma_{\mu\mu}$)

KLOE11: analysis of $\pi\pi\gamma/\mu\mu\gamma$

[□] 239.2 pb-1 of 2002 data sample (the same used in KLOE08 analysis), with photon at small angle : 0.87 Million μμγ events (compared to 3.4 Million for ππγ) [□]Careful work to achieve a control of ~1% in the muon selection, especially in the ρ region where $\pi\pi\gamma/\mu\mu\gamma$ ~10. π/μ separation crosschecked in three different methods (MTRK fit, Kinematic fit, cut on $\sigma_{\rm MTRK}$)

[□]μμγ (and $\pi\pi\gamma$) Efficiencies (Trk,Trg,PID) done on data □Excellent data/MC agreement for many kinematic variables: M_{TRK}, track and γ

polar angle, etc...

x 10 ²

Background:

Main backgrounds estimated from MC shapes fitted to data distribution in MTrk $(\pi\pi\gamma/\mu\mu\gamma, \pi\pi\pi, ee\gamma)$

- Systematic error on $\mu\mu\gamma$ due to background~1% in the ρ peak

 $0.84 < M\pi\pi^2 < 0.86 \text{ GeV2} \chi^2/\text{ndof} = 179/258$

π/μ separation: control of $\pi\pi\gamma$ MTRK tail

PA careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6 GeV 2 (ρ peak) where $\pi/\mu \sim 10$.

□ ππγ % BG to μμγ signal (MTRK<115 MeV) is ~10% → ππγ MTRK tail in the μμγ region must be well under control.

^Dππγ MTRK tail tuned using $\phi \rightarrow \pi^+\pi^-\pi^0$ control sample. Excellent agreement on MTRK (ππγ and μμγ) distributions

Final State Radiation (FSR)

The presence of not factorizable diagrams (like the 2 photon exchange) not present in Phokhara can lead to deviaton respect to:

$$\sigma_{\pi\pi}^{0} = \frac{4\pi\alpha^{2}}{3s'}(1+2m_{\mu}^{2}/s')\beta_{\mu}\frac{\left(d\sigma_{\pi\pi\gamma}^{ISR+FSR}(\theta_{\Sigma}^{\pi\pi}<15^{o})/ds'\right)}{\left(d\sigma_{\mu\mu\gamma}^{ISR}(\theta_{\Sigma}^{\mu\mu}<15^{o})/ds'\right)} \cdot Corr(\theta_{\Sigma}^{I+FSR}/\theta_{\Sigma}^{ISR})$$

• For the $\pi\pi\gamma$ this has been tested *in our previous publication and a validity within 0.2% was found (for pointlike pions)*

•For $\mu\mu\gamma$, we can assume the same 0.2% as conservative estimate of this missing contribution in the passage from I+FSR to ISR (in our small angle region)

We take the combined error of 0.3% for the uncertainty on the rel. FSR contribution

Consistency check of Radiator function, Luminosity, etc...

KLOE11 result on $|F_{\pi}|^2$ and comp. with KLOE08

Good agreement btw the two measurements, especially in the ρ region!!!

KLOE11: $a_{\mu}^{\pi\pi}$, (0.35-0.95 GeV²) = (384.1 ± 1.2stat ± 4.0sys ± 1.2theo) · 10⁻¹⁰ KLOE08: $a_{\mu}^{\pi\pi}$ (0.35-0.95 GeV²) = (387.2 ± 0.5stat ± 2.4sys ± 2.3theo) · 10⁻¹⁰ **Comparison of results: KLOE11 vs KLOE10**

KLOE11 result compared to KLOE10:

preliminary

$a_{\mu} = (g_{\mu} - 2)/2$:

Theoretical predictions compared to the BNL result (2009)

The latest inclusion of all $e^+e^$ data gives a discrepancy btw a_{μ}^{SM} and $a_{\mu}^{EXP} \ge 3 \sigma$

Preliminary KLOE11 in agreement with previous KLOE measurements and confirms this discrepancy!

Very important the new g-2 experiments (at FNAL and JPARC)!

Conclusion

During the last 10 years KLOE has performed a series of precision measurements with ISR which confirmed a 3σ discrepancy between a_{μ}^{SM} and the BNL measured value and allowed the measurement of $a_{\mu}^{\ \pi\pi}$ in the region 0.1-0.95 GeV²(70% of $a_{\mu}^{\ HLO}$) with 1.2% total error using KLOE data only.

A new (preliminary) measurement of $|F_{\pi}|^2$ from the $\pi\pi\gamma/\mu\mu\gamma$ ratio (based on 240 pb⁻¹) with 1.1% systematic error has been done. Preliminary results show good agreement for $\mu\mu\gamma$ cross section with PHOKHARA MC and for $|F_{\pi}|^2$ and $a_{\mu}^{\pi\pi}$ with previous KLOE published measurements.

Still more than 1.5 fb⁻¹ of KLOE data on tape. This is a ~4 improvement in statistics. We plan to analyse these data to improve $\sigma^{\pi\pi}$ (and may be other channels) measurement.

In addition we expect about 25 fb⁻¹ at KLOE-2. See (Balwierz and Giovannella's Talk)

Cross check of π/μ separation

^DThe π/μ separation has been crosschecked with two different (and independent) methods:

- $^{\rm o}\text{A}$ kinematic fit, in the hypothesis of 2 body+1 γ (ISR) events.

 $^{\rm p}$ π/μ separation obtained with these methods well in agreement with the standard one.

We have achieved an excellent Data/MC agreement for muons in many kinematic variables (as we did for pions)

 $\mbox{ }^{\mbox{ }}\pi/\mu$ separation obtained with these methods well in agreement with the standard one.

Cross check of π/μ separation σ_{MTRK}

systematic error.

Cross check of π/μ separation σ_{MTRK} 0.18 0.16 2,0.14 ق 0.12 2 • without $\sigma_{_{\mbox{\scriptsize MTRK}}}$ cut DATA $0.6 < M^2_{\mu\mu} < 0.62 \text{ GeV}^2$ • with $\sigma_{\ensuremath{\mathsf{MTRK}}}$ cut 10⁴ $< 0.6 \text{ GeV}^2$ 10 0.1 0.08 10 10³ After cut 0.06 10 0.04 10² 0.02 15 10 20 80 100 120 160 $\sigma_{\text{MTRK}} \text{ [MeV]}$ 0.5 MTRK [MeV] 0.4 0.6 0.7 0.8 0.9 $M^2_{\mu\nu}$ [GeV²]

 $^{\rm o}\text{A}$ cross check was realized by using a independent analysis based on a cut on the quality of the fitted tracks, parametrized by $\sigma_{_{MTRK}}$

^D The alternative analysis produced: a **BG contribution below 10%** (see figures); the $\mu^+\mu^-\gamma$ fraction determination consistent with the other procedure within the systematic error.