

High precision η meson mass determination at ANKE-COSY

Paul Goslawski

Westfälische Wilhelms-Universität Münster for the ANKE collaboration; AG Khoukaz

October 13th, 2011 STORI'11 in Frascati Motivation

History of the PDG value of the η meson mass

Motivation

Current situation on the $\boldsymbol{\eta}$ meson mass

Results of the η mass experiments with uncertainties below 60 keV/c²

Experimental	Mass	Measuring
Facility	$[MeV/c^2]$	Method
SPES-SATURNE	547.300	$dp \rightarrow {}^{3}\text{He}\eta$
NA48-SPS	547.843	decay products
GEM-COSY	547.311	pd $ ightarrow$ 3 He η
CLEO-CESR	547.785	decay products
KLOE-DAΦNE	547.873	decay products
CB-MAMI	547.851	photoproduction

Current PDG η mass value: (547.853 \pm 0.024) MeV/c²

Motiviation - "Reasons for disagreement" $dp \rightarrow {}^{3}He\eta$ cross section

Ideas/Speculation:

- Previous measurements shown strong η³He FSI
- ► Coupling of $\eta^3 \text{He} \leftrightarrow \pi^+ \pi^{-3} \text{He}$ can disturb the multipion background near the η position
 - \rightarrow Wrong identification of the central η mass

Determination of the η mass with a two-body reaction The dp \rightarrow $^{3}\text{He}\eta$ at ANKE-COSY

- Internal fixed target experiment with a cluster-jet target
- ³He nuclei detected in the forward-system
- \blacktriangleright Full geometrical acceptance for dp \rightarrow $^{3}\text{He}\,\eta$ up to 20 MeV excess energy

Determination of the η mass with a two-body reaction $_{\text{Kinematics}}$

Two-body reaction: $\label{eq:dp} dp \rightarrow {}^{3}\text{He}\,\eta$

• Final state momentum of ³He and η

$$p_{f} = \frac{\sqrt{(s - \{m_{3}_{He} + m_{\eta}\}^{2}) \cdot (s - \{m_{3}_{He} - m_{\eta}\}^{2})}}{2\sqrt{s}}$$

• CM-energy depends only on the beam momentum $\vec{p_d}$

$$\sqrt{s} = |P_d + P_p| = \sqrt{2m_p\sqrt{m_d^2 + {\vec{p_d}}^2}} + m_d^2 + m_p^2$$

Determination of the η mass with a two-body reaction ${}^{\text{Kinematics}}$

Near threshold:

Final state momentum is very sensitive to the η mass!

The goal:

- Accuracy of the η -mass: $\Delta m_{\eta} < 50 \text{ keV}/c^2$
- Final state momentum of the ³He-nuclei: p_f Δp_f = 400 keV/c

• Beam momentum:
$$p_d$$

 $\Delta p_d = 300 \text{ keV/c}$

Method

Artificial spin resonance

- Induced by a horizontal magnetic rf-field
- Depolarization of a vertically polarized deuteron beam

Resonance condition:

$$f_r = (1 + \gamma G_d) f_0$$

$$\gamma = \frac{1}{G_d} \left(\frac{f_r}{f_0} - 1 \right)$$

$$p_d = m_d \sqrt{\gamma^2 - 1}$$

- f_r resonance frequency
- f_0 revolution frequency
- G_d gyromagnetic anomaly

Results

Phys. Rev. ST Accel. Beams 13 (2010) 022803

$$p_d = (3146.41 \pm 0.05_{stat.} \pm 0.17_{sys.}) \; {\sf MeV/c}$$

$$rac{\Delta p_d}{p_d} < 6 \cdot 10^{-5}$$

- Uncertainty of 170 keV/c is dominated by the systematic variation of the spin resonance frequency
- Spin resonance frequency fr: Systematic uncertainty of ±15 Hz dominated by the variation of the orbit length
- Method and results published in Phys. Rev. ST Accel. Beams 13 (2010) 022803

Classical calibration:

Reactions used to calibrate ANKE:

- dp → dp elastic with
 fast forward scattered d detected
 with both particles detected
- *dp* → *ppn* charge-exchange scattering with two p detected
- $dp \rightarrow {}^{3}\text{He}\,\pi^{0}$ with ${}^{3}\text{He}$ nucleus detected

Identification of dp \rightarrow $^{3}\text{He}\eta$

- Background: dp elastic and deuteron break-up
- Suppressed by energy loss and TOF cut on the ³He nuclei

Background description using subthreshold data

- ► Subthreshold data were analyzed as if they were taken above threshold: $\vec{p}^{LS} = \frac{p_{beam}}{p_{sub.}^{sub.}} \cdot \vec{p}_{sub.}^{LS}$
- Pure ³Heη signal after background subtraction

The momentum locus

Verify and improve calibration

Using a two body reaction to verify the calibration

Perfect symmetric momentum sphere in p_x, p_y, p_z with radius

 $p_f = \sqrt{p_x^2 + p_y^2 + p_z^2}$

- Deviations of symmetric shape
 improve calibration
- Study cos θ and φ dependency of the final state momentum

$$p_f = p_f(\cos artheta)$$
 and $p_f = p_f(\phi)$

 Therefore full geometrical acceptance is needed

Angular dependence of the ³He η final state momentum $p_f = p_f(\cos \vartheta)$ at an excess energy of Q = 1.2 MeV

Influence of different momentum resolutions for p_x , p_y , p_z on p_f

Improve calibration and extract resolution parameters

Final state momentum correction

- Extracted p_f have to be corrected
- Differ by up to 2 MeV/c in the excess energy range 1-11 MeV
- $\rightarrow\,$ Same effect occurs at the missing mass (Difference of 0.3 $MeV/c^2)$

Final state momentum determination

- ► 12 final state momenta in the range of p_f = 30 - 100 MeV/c
- Accuracy:

$$\Delta p_f < 320 \ {
m keV/c}$$

► In progress:

Uncertainties of correction function depending on the precision of the extracted resolution in p_x , p_y , p_z

High precision η mass determination Preliminary "final" ANKE-COSY result of the η mass

High precision η mass determination Preliminary "final" ANKE-COSY result of the η mass

Preliminary ANKE-COSY result of the η mass $_{\text{Summary}}$

$$m_{\eta} = (547.869 \pm 0.007_{\text{stat.}} \pm 0.040_{\text{sys.}}) \; \text{MeV}/\text{c}^2$$

ANKE η meson mass

- Competitive with best measurements
- In agreement with higher η meson mass measurements
- ► Challenges:
 - \rightarrow Beam momentum determination
 - \rightarrow Final state mom. extraction

Thank you for your attention

Additional Slides

Additional Slides

ANKE at COSY The reaction dp \rightarrow ³He η at ANKE

Determination of the η mass with a two-body reaction $_{\text{Cycle timing structure}}$

Measurement of (p_d, p_f)

- 12 fixed beam momenta divided into two supercycles (SC)
- Five days of data taking for every supercycle
- Data below η-production threshold for background description

Supercycle with 7 different beam energies

Spin in a synchrotron - Thomas-BMT equation

Spin in a synchrotron

- Vertical polarized deuteron beam
- Magnetic moment and Spin:
- Spin in a magnetic field:

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$
$$\frac{d\vec{S}}{dt} = g \frac{q}{2m} \vec{S} \times \vec{B}$$

 \rightarrow equation is defined in the rest frame of the particle \rightarrow transform magnetic structure of synchrotron in rest frame of particle

Thomas-BMT-equation:

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left[(1 + G\gamma) \, \vec{B}_{\perp} + (1 + G) \, \vec{B}_{||} + \left(G\gamma + \frac{\gamma}{\gamma + 1} \right) \frac{\vec{E} \times \vec{v}}{c^2} \right]$$

Revolution frequency f_0

Schottky Noise of the beam

- Origin: statistical distribution of the particles in the beam
- Current fluctuations induce a voltage signal at a beam pick-up
- Fourier transformation of the voltage signal delivers the frequency distribution around the harmonics of the revolution frequency

Mean revolution frequency: Arithmetic mean of the frequencies

$$\bar{f}_0 = \frac{\sum_{i=1}^m f_i \cdot \bar{I}_i}{\sum_{i=1}^m \bar{I}_i}$$

Revolution frequency f_0

Stability of the revolution frequency ($f_0 \approx 1.4$ MHz)

- Over 1 day stable in the range of 1 Hz
- Over 5 days stable in the range of 1 Hz
- Stable before and after a COSY-breakdown
- ightarrow Determination of the revolution frequency with a systematic uncertainty of $\Delta f_0 = \pm 6 \text{ Hz}$

Spin resonance frequency f_r

Normalized spin resonance spectrum

Top part:

- Describe every spin resonance spectrum by a gaussian
- Shift all spectra by the mean value of the gaussian
- Normalize the height of each measurement

Bottom part:

In addition bin x-axis

Spin resonance frequency f_r

Spin resonance frequency f_r and orbit length s

Origin of the shift of the spin resonance frequency

- ► Revolution frequency is stable → no shift
- Change of the orbit length s up to 3 mm
- → Spin resonance method allows an orbit length determination of below
 0.3 mm at a circumference of COSY of 183.4 m

Orbit length s determination

$$\gamma = \frac{1}{G_d} \left(\frac{f_r}{f_0} - 1 \right)$$
$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{1}{\sqrt{1 - s^2 \cdot f_0^2/c^2}}$$
$$s = c \cdot \left\{ \frac{1}{f_0^2} - \left(\frac{G_d}{f_r - f_0} \right)^2 \right\}^{\frac{1}{2}}$$

Accuracy of the orbit length determination: $\frac{\Delta s}{s} < 2 \cdot 10^{-6}$

Spin resonance frequency f_r and orbit length s

Accuracy and possible systematic shifts of the resonance frequency f_r

Table: Accuracy and possible systematic shifts of the resonance frequency f_r .

Source	$\Delta f_r/f_r$
Resonance frequency accuracy from	
depolarization spectra	$1.5 imes10^{-5}$
Spin tune shifts from longitudinal fields	
(field errors)	$1.4 imes10^{-9}$
Spin tune shifts from radial fields	
(field errors, vertical correctors)	$6.0 imes10^{-9}$
Spin tune shifts from radial fields	
(vertical orbit in quadrupoles)	$4.1 imes10^{-8}$

η^3 He final state interaction Is there a quasi bound state?

$\eta^3 He$ final state interaction – quasi bound state? $_{\eta\text{-mesic nucleus}}$

Quasi-bound η -mesic nuclei

Attractive S-wave ηN interaction

R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54 (1985) 685

• Possible formation of η -nucleus bound states

Q. Haider and L.C. Liu, Phys. Lett. B172 (1986) 257

C. Wilkin, Phys. Rev. C47 (1993) 938

η -mesic nuclei program at COSY

- A > 4: GEM (η^6 Li and η^{25} Mg)
- η^4 He: ANKE, GEM, WASA
- ▶ η^3 He: ANKE, COSY-11, GEM, WASA
- $\eta d \& \eta^3 H$: Proposed measurements at ANKE

 $\eta^{3}He$ final state interaction – quasi bound state? FSI - Final State Interaction

Two ways to investigate η -mesic nuclei

- Signal from such a state below the ηA production threshold (WASA-at-COSY, Talk of M. Skurzok, Sunday evening)
- Investigation of the excitation function **above** threshold; A pole close to threshold should influence the ηA production \rightarrow described by a FSI ansatz
- S-wave FSI ansatz for dp \rightarrow $^{3}\text{He}\eta\text{:}$

$$\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_{\text{prod.}} \cdot FSI|^2$$

- Classical description with a and r₀:
- Alternative description with poles:

$$FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2} \cdot a \cdot r_0 \cdot p_f^2}$$
$$FSI = \frac{1}{(1 - p_f/p_1)(1 - p_f/p_2)}$$

with
$$a = -i \cdot \frac{p_1 + p_2}{p_1 \cdot p_2}$$
 and $r_0 = \frac{2 \cdot i}{p_1 + p_2}$

$\eta^{3}He$ final state interaction – quasi bound state? Total cross section of dp \rightarrow $^{3}He\eta$

T. Mersmann et al., Phys. Rev. Lett. 98 (2007) 242301; T. Rausmann et al., Phys. Rev. C80 (2009) 017001.

η^{3} He final state interaction – quasi bound state?

η^{3} He final state interaction – quasi bound state?

Status and results of the ANKE $\eta^3 He$ program

- Strong attractive FSI: large |a| and small $|p_1|$
- Fit to the data for Q < 11 MeV: Pole of the scattering amplitude:

$$Q_0 = p_1^2/2m_{
m red} = [(-0.30\pm 0.15~)\pm i\,(0.21\pm 0.29)]\,{
m MeV}$$

Scattering length:

$$\textit{a}(\eta^{3} \text{He}) = [\pm (10.7 \pm 0.8) + \textit{i} (1.5 \pm 2.6)] \, \text{fm}$$

C. Wilkin, Phys. Rev. C47 (1993) 938: $a(\eta^{3}He) = (-2.31 + i2.57)$ fm

Indication for a quasi-bound or virtual state!
 C. Wilkin et al., Phys. Lett. B654 (2007) 92-96;

Further investigations

- Polarized measurement: Verification of FSI
- Other ηN systems: $\eta d \& \eta^3 H$