Design and Performance of the Future Cluster-Jet Target for PANDA at FAIR

Esperanza Köhler

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik (AG Khoukaz)

International Conference on Nuclear Physics at Storage Rings STORI'11

October 11th 2011

The PANDA experiment at FAIR Overview

- FAIR: Facility for Antiproton and Ion Research
- HESR: High Energy Storage Ring
- **PANDA**: AntiProton ANnihilation at DArmstadt

The PANDA experiment at FAIR PANDA detector

 $\overline{p} + p \longrightarrow$ mesons, exotic hadrons \Rightarrow insights into strong interaction

For 4π solid angle acceptance \longrightarrow installation of the internal target in a distance of 2.1 m from interaction point

Planned internal targets for PANDA: cluster-jet target & pellet target

Requirements for an internal target for PANDA

- High purity of used target material
 - \longrightarrow Decrease of background reactions
- Target density
 - ρ_T in order of $10^{15} \frac{atoms}{cm^2}$ at $2.1 \,\mathrm{m}$ \longrightarrow Full exploit of antiproton production rate
 - Constant in time & adjustable (offline)
 - \longrightarrow For data aquisition
- Variable target beam size & shape (offline)
 - \longrightarrow Depends on experimental programm
- Effective target beam size as small as possible

 $\longrightarrow\,$ Low influence on vacuum conditions in the HESR

cluster-jet target

target spectrometer

Prototype of a high density cluster-jet target for $\overline{\mathsf{P}}\mathsf{ANDA}^\mathsf{I}$ $\mathsf{Overview}$

- Prototype already built up and set successfully into operation
- Complete system installed in PANDA geometry (scattering chamber corresponds to PANDA interaction point)

 Cluster beam characteristics can be transferred directly to the situation at PANDA

beam dump • Target beam diagnostics in scattering chamber

 \implies Determination of cluster beam position, size & density

Prototype of a high density cluster-jet target for $\overline{P}ANDA$ Cluster production with a Laval nozzle (in case of hydrogen gas)

• Cluster: Particle with *n* atoms/molecules, in this case van der Waals interactions responsible for bonding 10^{-1} mbar 10^{-5} mbar

- Temperature range: $T = 20 50 \,\mathrm{K}$
- Pressure range: p = 7 20 bar

- Laval nozzle: $\emptyset = 28 \, \mu m$ (narrowest point)
- Skimmer: $\emptyset = 0.5 \,\mathrm{mm}$ (movable)

(differential pump system)

• Collimator: $\emptyset = 0.7 \,\mathrm{mm}$ (movable)

Prototype of a high density cluster-jet target for $\overline{\mathsf{P}}\mathsf{ANDA}$ $_{\mathsf{Cluster source}}$

- Temperature range: $T = 20 50 \,\mathrm{K}$
- Pressure range: p = 7 20 bar

- Laval nozzle: $\emptyset = 28 \, \mu m$ (narrowest point)
- Skimmer: $\emptyset = 0.5 \,\mathrm{mm}$ (movable)
- Collimator: $\emptyset = 0.7 \,\mathrm{mm}$ (movable)

Prototype of a high density cluster-jet target for $\overline{P}ANDA^{T}$

- Temperature range: $T = 20 50 \,\mathrm{K}$
- Pressure range: p = 7 20 bar

- Laval nozzle: $\emptyset = 28 \,\mu\mathrm{m}$ (narrowest point)
- Skimmer: $\emptyset = 0.5 \,\mathrm{mm}$ (movable)
- Collimator: $\emptyset = 0.7 \,\mathrm{mm}$ (movable)

Prototype of a high density cluster-jet target for $\overline{P}ANDA$ Scattering chamber

Scattering chamber equipped with a beam diagnostic system \implies **Determination of:**

- target position
- size
- density

Determination of target position, size and density

stick position

9 / 27

Determination of target position, size and density

pressure in scattering chamber

Determination of target position, size and density

 $\frac{p_{sc}}{v_c}$

 ρ_T : Target density p_{sc} : Pressure increase in scattering chamber v_c : Cluster velocity

 $(200-1000\,\mathrm{m/s})$

 \longrightarrow see talk of A. Täschner at 12.20

	PROMISE/WASA (CELSIUS)	E835 (FERMILAB)	ANKE, COSY11 (COSY)	PANDA Prototype (IKP Münster)
nozzle diameter	$< 100\mu{ m m}$	37 μm	$11-16\mu\mathrm{m}$	28 μm
gas temperature	$20-35\mathrm{K}$	$15-40{\rm K}$	$22-35{\rm K}$	$20-35\mathrm{K}$
gas pressure	1.4 bar	$< 8\mathrm{bar}$	$18\mathrm{bar}$	$> 18 \mathrm{bar}$
distance from nozzle <i>r</i>	$0.325\mathrm{m}$	0.26 m	0.65 m	2.1 m
max. areal density	$1.3\times10^{14}\mathrm{cm}^{-2}$	$2\times 10^{14}{\rm cm}^{-2}$	$\gg 10^{14}\mathrm{cm}^{-2}$	$8 imes 10^{14}{ m cm}^{-2}$ (with presented setup)

Target density decreases with $1/r^2$

Target density ...at 17 bar, above critical point (33.18 K, 13 bar)

- Target density **easy to vary** over several orders of magnitude (*T*, *p*)
- Increase of target density with decreasing temperature up to 24 K (with small variations)
- Drop because of different state of matter at formation of clusters (supercritical fluid → fluid)
- Decreasing target density below 24 K ???

Overview

Cluster beam in skimmer chamber 18.3 K, 18.5 bar

Cluster beam in skimmer chamber

- Inhomogeneous cluster beam in skimmer chamber
- Density still constant in scattering chamber (PANDA interaction point) → extracted beam is homogeneous
- Do we have a higher density at the brighter area?
- \implies Movable nozzle required

Improvement of target density

Movable nozzle

Improvement of target density Spherical joint

Improvement of target density

Nozzle extension

Improvement of target density Movable nozzle

Improvement of target density Movable nozzle

Improvement of target density 19 K, 18.5 bar

Improvement of target density 19 K, 18.5 bar

Improvement of target density

• Volume density: $1.9 \times 10^{15} \, \mathrm{atoms}/\mathrm{cm}^3$

Improvement of vacuum in scattering chamber Special shaped collimator

• Using a collimator with a slit instead of a round opening

 $\implies \text{Reduces the influence on}$ the vacuum in scattering chamber or rather in the HESR

Improvement of vacuum in scattering chamber LM-Micrograph of a collimator with round opening and slit

 $150 \times 860 \,\mu\mathrm{m}$

Improvement of vacuum in scattering chamber Round shaped cluster beam vs. line formed cluster beam

Cluster beam is easy to shape with an orifice \implies Effective target beam size as small as possible

Requirements for an internal target for $\overline{P}ANDA$

- High purity of used target material H₂ √ (good experience with the use of D₂ at previous cluster-jet targets)
- Target density
 - ho_T in order of $10^{15} \, {{\rm atoms}\over{{\rm cm}^2}}$ at $2.1 \, {\rm m}$ with movable nozzle \checkmark
 - constant in time & adjustable (depends on temperature & pressure settings) √
- Variable target beam size & shape (collimator) \checkmark
- Effective target beam size as small as possible
 → Low influence on vacuum conditions in the HESR (special shaped collimator) √

All requirements are fulfilled by using a cluster-jet target

Summary and Outlook

Summary

- Cluster-jet target prototype built up in $\overline{P}ANDA$ geometry
- Prototype set successfully into operation (see A. Täschner, et al., Nucl. Instr. and Meth. A (2011) & talk of A. Khoukaz, Friday 14.10.2011 at 12.30)
- Inhomogeneous clusterbeam & use of spherical joint lead to higher densities \implies Target density: $1.9 \times 10^{15} \frac{atoms}{cm^3}$ at 2.1 m ...so far $\ddot{\sim}$
- \bullet The prototype fulfills all requirements for $\overline{\mathsf{P}}\mathsf{ANDA}$

Outlook

- Search for settings with the highest density
- Search for smallest size for a special shaped collimator to improve vacuum conditions
- Research on cluster size and mass
- \bullet Construction of the final target for $\overline{\mathsf{P}}\mathsf{ANDA}$ in progress

Thank you for your attention!

Bundesministerium für Bildung und Forschung

