

Pion production in diproton reactions with polarized beams at ANKE-COSY

S. Dymov for the ANKE collaboration

10 October 2011

STORI 2011, Frascati

Contents

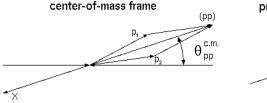
Introduction

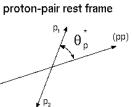
- Physics with di-proton final state at ANKE
- Motivation for $pN \rightarrow \{pp\}_{s} \pi$ from χPT

Near threshold pion production at ANKE

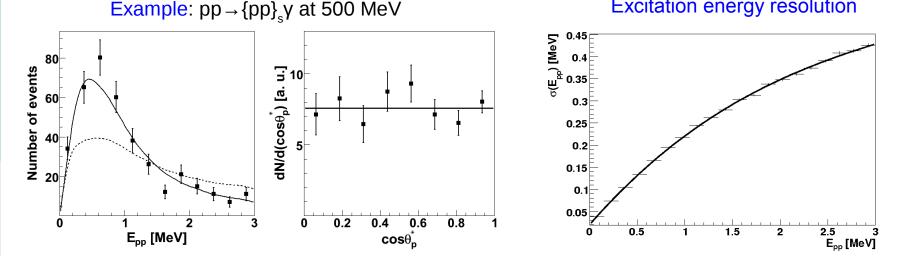
- ANKE @ COSY
- ANKE exp. program for $pn \rightarrow \{pp\}_s \pi^-$ and $pp \rightarrow \{pp\}_s \pi^0$
- Results for $d\sigma/d\Omega$ and A_v^p
- Double polarized experiment $(A_{x,x} \text{ and } A_{y,y})$

Summary and outlook


Introduction: two nucleon systems



Deuteron: bound (p+n) system, very well studied **Di-proton** $\{pp\}_{s}$: free $\{pp\}$ -pair in ${}^{1}S_{0}$ state, $E_{nn} < 3$ MeV


S wave:

Isotropy in {pp} - rest frame pp Final State Interaction (Migdal-Watson FSI factor)

Excitation energy resolution

New tool to study hadron interactions

Pion production study at ANKE (1)

- Theoretical description of $pN \rightarrow pp \pi$ process is considerably simplified if two final protons are detected at low excitation energy, i.e. such di-protons are predominantly in the ${}^{1}S_{0}$ state.
- Spin structure of the $pn \rightarrow \{pp\}_s \pi^-$ (or $pp \rightarrow \{pp\}_s \pi^0$) is $\frac{1}{2}^{+1} \frac{1}{2}^{+} \rightarrow 0^{+} 0^{-}$

only two spin amplitudes (compared to 6 for $pp \rightarrow d\pi^+$)

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{0} = \frac{1}{4} (|A|^{2} + |B|^{2}), \qquad A_{y}^{p} = A_{y}^{Q} = -\frac{2Im(A^{*}B)}{|A|^{2} + |B|^{2}}$$

$$A_{xx} = -A_{zz} = \frac{|B|^{2} - |A|^{2}}{|A|^{2} + |B|^{2}}, \quad A_{yy} = 1, \quad A_{xz} = A_{zx} = -\frac{2Re(A^{*}B)}{|A|^{2} + |B|^{2}}$$

From this it follows that the measurement of

- the differential cross section,
- the analysing power and
- one spin correlation coefficient

is sufficient to extract magnitudes of the two amplitudes and their relative phase.

Pion production at 353 MeV

The experiments on $pp \rightarrow \{pp\}_{s}\pi^{0}$ in the 350 MeV region, taken in conjunction with $np \rightarrow \{pp\}_{s}\pi^{-}$, are particularly interesting because a valuable test of χPT could be deduced.

Test of χPT predictions:

A full data set of all observables would give the *partial wave amplitudes Transitions up to the pion d wave:*

 $pp \rightarrow \{pp\}_{s}\pi^{0} \text{ includes } {}^{3}P_{0} \rightarrow {}^{1}S_{0}s, {}^{3}P_{2} \rightarrow {}^{1}S_{0}d \text{ and } {}^{3}F_{2} \rightarrow {}^{1}S_{0}d$ $np \rightarrow \{pp\}_{s}\pi^{-} \text{ adds } {}^{3}S_{1} \rightarrow {}^{1}S_{0}p \text{ and } {}^{3}D_{1} \rightarrow {}^{1}S_{0}p$

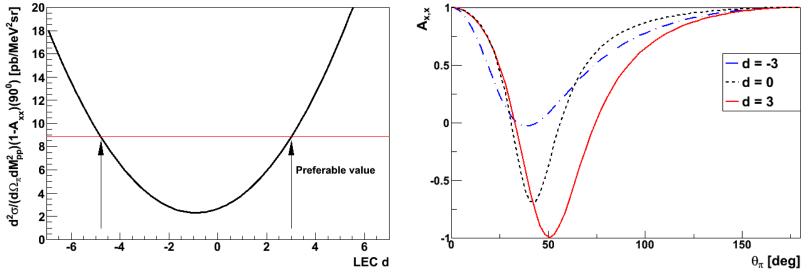
• Extraction of χ PT LEC from pion production

(short range interactions in χPT)

The p-wave amplitudes give access to the $4N\pi$ contact operator, controlled by the *low energy constant d*.

$$NN \rightarrow NN\pi$$
 $3N$
scattering

LEC d connects different low-energy reactions: $pp \rightarrow de^+v$, $pd \rightarrow pd$, $\gamma d \rightarrow nn\pi^+$

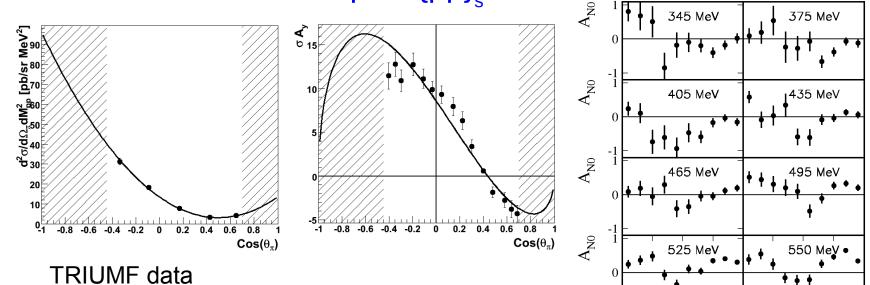


Accessing LEC d via $A_{_{\! X,X}}$ and $d\sigma/d\Omega$

The <u>direct and most clean</u> way to access the LEC d is to measure the cross section and the spin correlation coefficient $A_{x,x}$ in np \rightarrow {pp}_s π ⁻:

 $(1-A_{x,x})d\sigma/d\Omega \sim |\delta|^2 k^2 \sin^2\theta, \qquad A_{y,y}=1$

where δ is one of the p-wave amplitudes, containing the 4N π contact term Only one factor (1-A_{x,x})d σ /d Ω (90°) has to be extracted from the measurement.



 χ PT calculation by FZ-Juelich IKP theory (V.Baru et al)

The method does not depend on assumptions about the d-waves or require subtraction of data with different systematic errors.

Available data on $d\sigma/d\Omega$ and A_v^p at 353 MeV

 $pn \rightarrow \{pp\}_{s} \pi^{-}$

H. Hahn et al., Phys. Rev. Lett. 82 (1999) 2258, F. Duncan et al., Phys. Rev. Lett. 80 (1998) 4390 (fits are quadratic over π momentum)

> PSI data M. Daum et al., Eur. Phys. J. C 25 (2002) 55

 $\cos \Theta_{\pi}^{*}$

0.5

1

-0.5

-1

0

-0.5

0

0.5

 $\cos \Theta_{\pi}^*$

Problems:

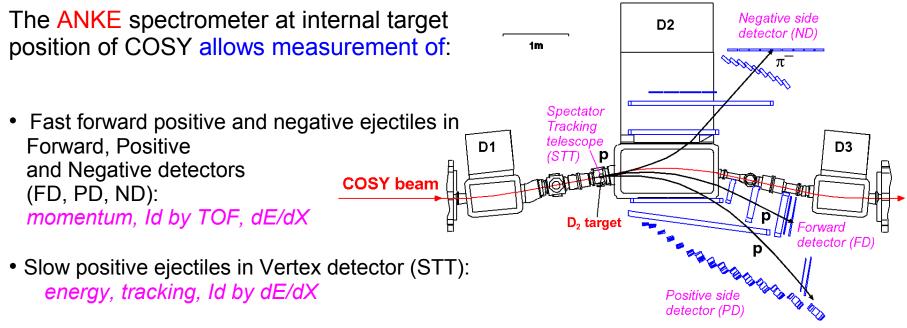
Absence or poor precision of $pn \rightarrow \{pp\}_s \pi^-$ data at large and small angles. Lack of $pp \rightarrow \{pp\}_s \pi^0 A_v$ data at the same energy. **ÜLICH**

Experimental program at ANKE

 $pN \rightarrow \{pp\}_{s}\pi$ interactions at T_{n} =353 MeV:

- $d\sigma/d\Omega$ and A_v^p in $\overline{pp} \rightarrow \{pp\}_s \pi^0$
- → d σ /d Ω and A_v^p in $\vec{pn} \rightarrow \{pp\}_s \pi^-$
- A_{x,x}, A_{y,y} in np → {pp}_sπ⁻

measured in 2007, 2009


measured in 2009

measured in 2011

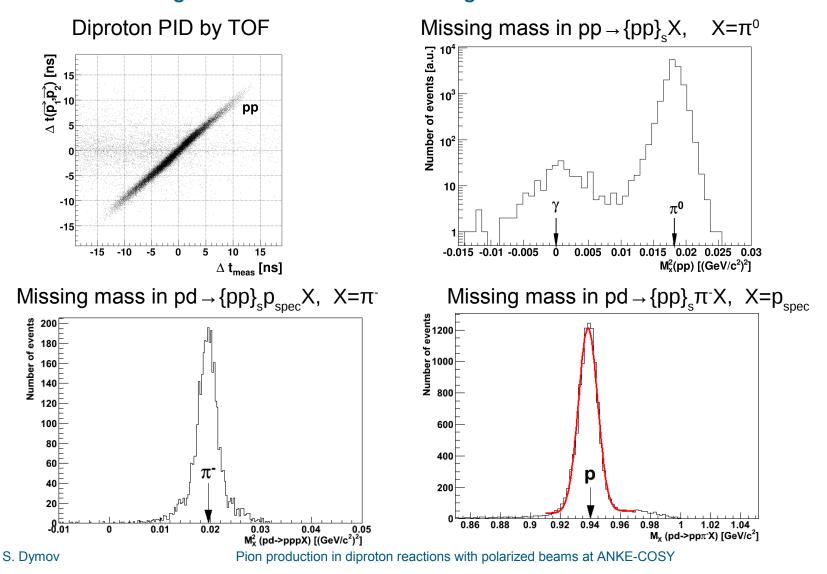
Experiment: ANKE@COSY

Cooler Synchrotron COSY at Juelich provides polarised proton and deuteron beams of 600 – 3700 MeV/c momentum.

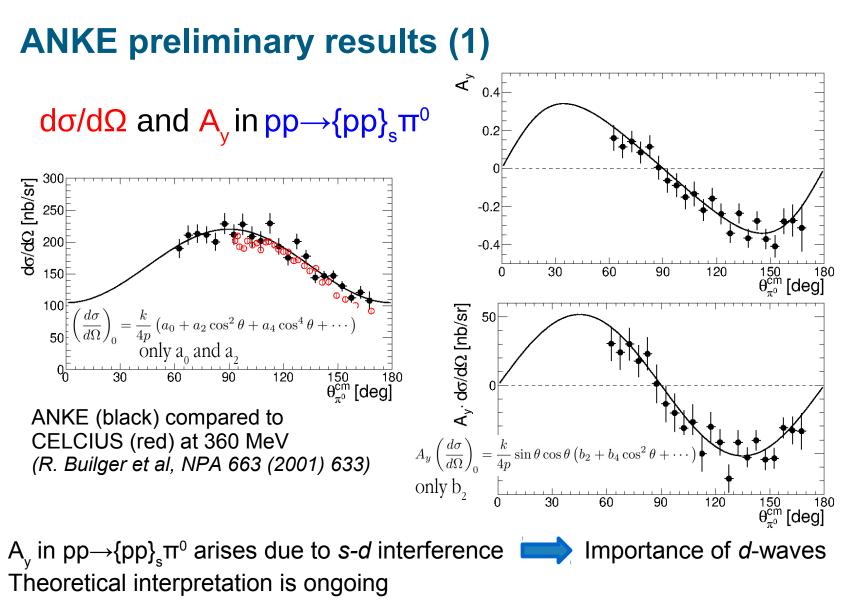
Targets available:

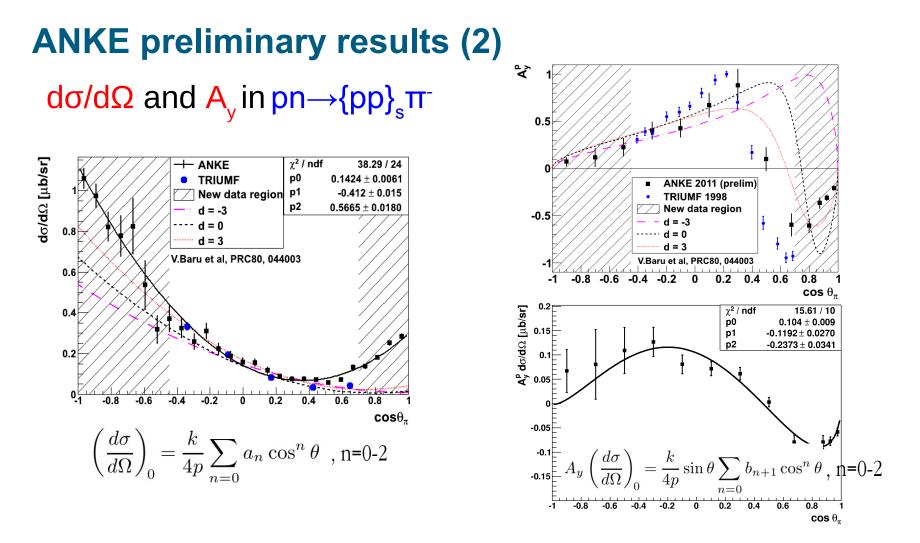
- Cluster jet H₂ and D₂
- Internal polarized (H, D) target (PIT) with a storage cell

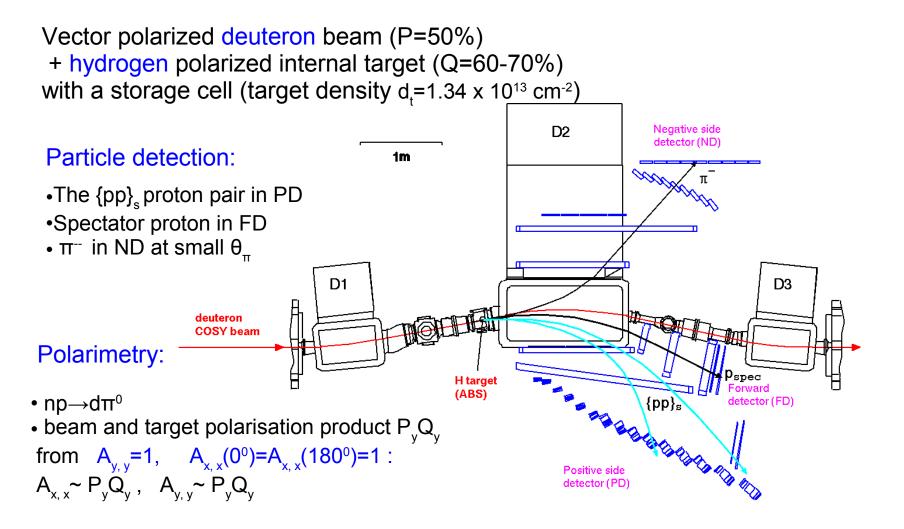
ANKE is well suited for the fast proton pairs with low excitation energy


Experiment: scheme of measurement

$\vec{p}d \rightarrow \{pp\}_{s}\pi^{-} + p_{spec}$ $\vec{p}p \rightarrow \{pp\}_{s}\pi^{0}$ Polarized proton beam: P_v=65% H_2 , D_2 cluster jet target: $d=5.10^{14}$ cm⁻² Negative side D2 detector (ND) L=1.5 pb⁻¹ Luminosity: 1m Polarimetry, normalization: $pp \rightarrow d\pi^+$, $np \rightarrow d\pi^0$ Spectator Tracking telescope D1 D3 р COSY beam π^0 case: {pp} detected π case: + p_{spec} or π **D**₂ target Forward detector (FD) Positive side detector (PD)

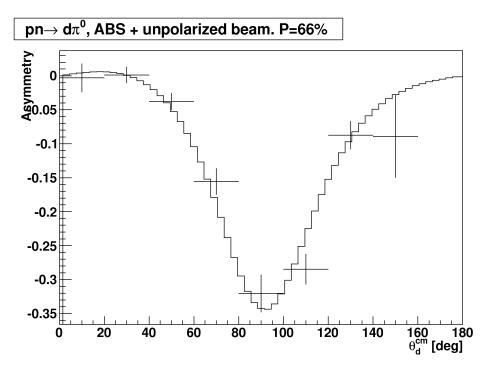

 $d\sigma/d\Omega$ and A_{v}^{p}


Experiment: Identification of $pn \rightarrow \{pp\}_{s} \pi^{-}$ and $pp \rightarrow \{pp\}_{s} \pi^{0}$ at 353 MeV

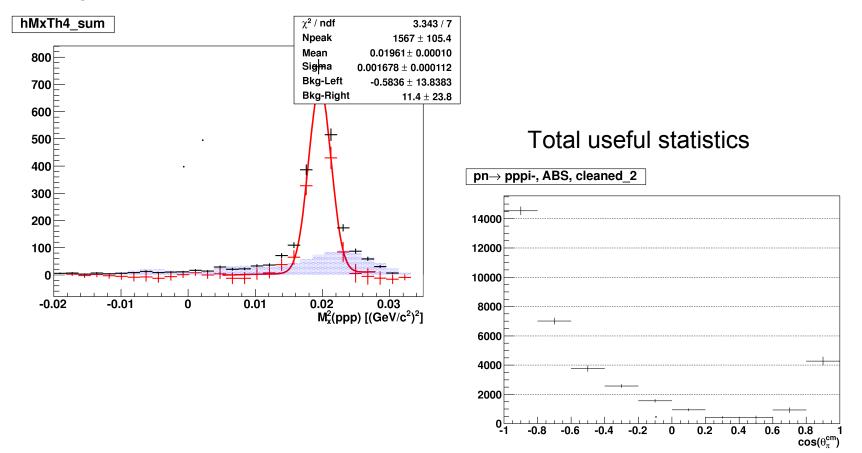


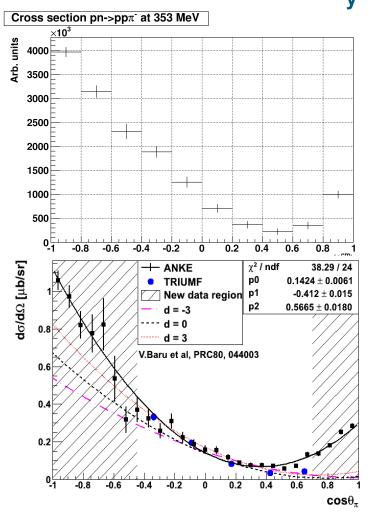
 χ PT predictions (d σ /d Ω are A_v) are for *s* and *p* pion waves only

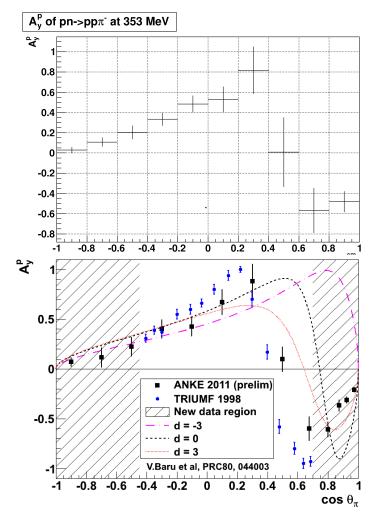
Pion production in diproton reactions with polarized beams at ANKE-COSY


Measurement of $A_{x,x}$ in $\overrightarrow{dp} \rightarrow p_{sp} \{pp\}_{s} \pi^{-}$ at $T_{d} = 706 \text{ MeV}$

Polarimetry with $np \rightarrow d\pi^0$


- •Final d, spectator p are detected in FD
- •Identified by TOF, Mx
- •Backgroung shape from measurements with N2
- •Polarimetry for beam and target


Selection of $dp \rightarrow p_{sp} \{pp\}_{s} \pi^{-}$


Background subtraction in Mx spectra with N2 data (shaded)

Cross section and ${\rm A}_{\rm v}\,$ from the new data

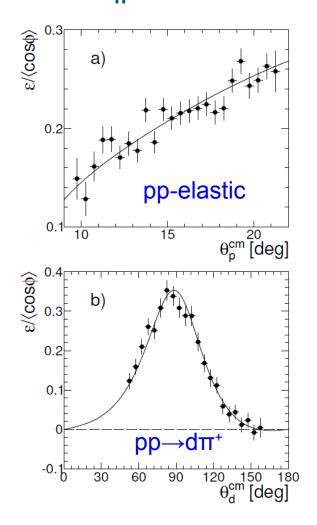
Summary

- Di-proton final state provides a new tool to study hadron interactions
- Further development of ChPT requires new data on the pp→{pp}_sπ⁰ and pn→{pp}_sπ⁻ processes near the threshold:
 unpolarized, single and double polarized measurements at ANKE
- dσ/dΩ and A_y in the two processes has been measured at 353 MeV. The first results show importance of the pion D-waves, LEC d=3 value is favored
- Double polarisation measurement of A_{x,x} in pn→{pp}_sπ⁻, done in 2011, provides new information on the 4Nπ contact term in ChPT
 Outlook
 - To fix the d-waves contribution and get second p-wave amplitude we need to know A_{x,z} in pn→{pp}_sπ⁻
 - Siberian snake is needed at COSY

Additional slides

Di-proton program at ANKE-COSY

- d-breakup $\overrightarrow{pd} \rightarrow \{pp\}_{s}(0^{\circ})$ n at high momentum transfer
- $dp \rightarrow \{pp\}_{s}(0^{0})$ n at low momentum transfer (pn CE amplitudes)
- $\bullet \stackrel{\rightarrow}{dp} \rightarrow \{pp\}_{s}(0^{0}) \Delta^{0}$
- meson production in $pN \rightarrow \{pp\}_s X$
 - X=π
 - pp \rightarrow {pp}_s π^0 at T_p = 0.5 2.4 GeV
 - $\vec{p}\vec{N} \rightarrow \{pp\}_{s}\pi$ near threshold
 - > $X=(2\pi)$ (ABC effect in pp collisions)
 - X=η, ω
- inverse diproton photodisintegration $pp \rightarrow \{pp\}_{s}\gamma$



Beam polarisation and luminosity at T_n = 353 MeV

→ Using (quasi-) free pp→dπ⁺ and np→dπ⁰ dσ/dΩ and A^p available from the SAID database

Example:

Determination of the beam polarization for $pp \rightarrow pp\pi^0$ measurement: Consistent results P=0.68 from elastic and $pp \rightarrow d\pi^+$

