8th Int. Conf. on Nuclear Physics at Storage Rings ST/RI'11

Kaonic helium3 and 4 measurements by the SIDDHARTA experiment at DAFΦNE

SIDDHARTA

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

- LNF- INFN, Frascati, Italy
- SMI- ÖAW, Vienna, Austria
- IFIN HH, Bucharest, Romania
- Politecnico, Milano, Italy
- MPE, Garching, Germany
- PNSensors, Munich, Germany
- **RIKEN**, Japan
- Univ. Tokyo, Japan
- Victoria Univ., Canada

EU Fundings: JRA10 – FP6 - I3HP Network WP9 – LEANNIS – FP7- I3HP2

Study of Strongly Interacting Matter

The scientific aim

the determination of the *isospin dependent* \overline{KN} *scattering lengths* through a ~ *eV measurement of the shift* and *of the width* of the K_{\alpha} line of **kaonic hydrogen** and the *first (similar) measurement* of **kaonic deuterium**

See talk of M. Cargnelli

Kaonic Helium measurements SIDDHARTA experiment

In the framework of the SIDDHARTA experiment we have performed the measurements related with the **Kaonic helium transition to the 2p level (L-lines)**:

- for first time in a gaseous target for ⁴He
- for the first time ever for K³He

Kaonic Helium atoms

Kaonic helium atom data (Z=2)

Kaonic helium atoms theoretical values

There are two types of theories compared to the experimental results:

Optical-potential model:

(theoretical calculations based on kaonic atom data)

	Recent	theoretical	cal	cul	ation	5:
--	--------	-------------	-----	-----	-------	----

Akaishi-Yamazaki model of deeply-bound kaon-nucleus states

Shift (eV)	Ref.
-0.13±0.02	Batty, NPA508 (1990) 89c
-0.14±0.02	Batty, NPA508 (1990) 89c
-1.5	Akaishi, Porc. EXA05

Predicts a possible maximum shift: ΔE_{2p} of $\pm 10 \text{ eV}$

Need a new K-⁴He X-ray measurement!

New K⁴He results by KEK PS E570

 $\Delta E_{2n} = 2 \pm 2(\text{stat.}) \pm 2(\text{syst.}) \text{ eV}$

SIDDHARTA experiment

$$e^+ + e^- \rightarrow \phi \rightarrow K^+ + K^-$$

Monochromatic, low-momentum kaon beam from DAΦNE (127 MeV/c)

No hadronic background due to the beam line (compare with hadron beam line :e.g with KEK line)

Big advantages of the SIDDHARTA experiment:

• low density gas target with an efficient kaon stopping power (negligible Compton scattering in helium)

- •K+K- pair detection
- •Silicon Drift Detector (SDDs) as detector

SIDDHARTA overview

The experimental setup

Target size: r = 72 mm height = 155 mm For He3: Temp. of gas: 20K Pressure: 1 bar Installed SDD: 144 cm² SDD operation temp: 170 K SDD Energy resolution: ≈150 eV (at 6 keV)

Kaonic ⁴He data SIDDHARTA experiment

The Kaonic ⁴He X-ray data were taken for about two weeks in January 2009.

In this period, an **integrated luminosity of about 20pb**⁻¹ was collected.

This corresponds to about 4.7×10^6 kaons detected by the kaon detector.

SDD spectrum of X-ray uncorrelated with kaon production. Ti and Mn X-ray peaks are produced by the ⁵⁵Fe source in normal condition of beam

Energy resolution: FWHM (@6.4 keV): 151 ± 2 eV

Triple coincidences

Energy spectrum of K-4He X-rays

 $E_{exp} = 6463.6 \pm 5.8 \text{ eV}$

 $E_{e.m.} = 6463.5 \pm 0.2 \text{ eV}$

$$\Delta E = E_{exp} - E_{e.m.} = 0 \pm 6(stat) \pm 2(syst) eV$$

Published in PLB 681(2009) 310-314

SIDDHARTA's results		Ref.	$\Delta E \ (eV)$
is consistent with the		Wiegand et al. [5]	-41 ± 33
results obtained by	N	Batty et al. [6]	-35 ± 12
E570 experiment		Baird et al. [7]	-50 ± 12
		Average of above [1,7]	-43 ± 8
		Okada et al. [10]	$+2 \pm 2 \text{ (stat)} \pm 2 \text{ (syst)}$
"kaonic helium puzzle"		This work	$0 \pm 6 \text{ (stat)} \pm 2 \text{ (syst)}$
solved			<u></u>

Summary of the K-⁴He shifts

Data taking periods of SIDDHARTA in 2009

Removed ⁵⁵Fe source in other data

Kaonic ³Helium data SIDDHARTA experiment

The Kaonic- ³He X-ray data were taken for about 4 days in November 2009.

In this period, an **integrated luminosity of about 16 pb⁻¹** was collected.

The Kaonic-³He case

There are NOT previous experiments done for the X-ray measurements for Kaonic- ³He

Planned experiments: SIDDHARTA (done);

E17 (to be done)

Transition	Kaonic- ³ He e.m. (eV)(*)
3d->2p	6224
4d->2p	8399
5d->2p	9406

(*)Zeitschrift fur Physik D 15 (1990) 321

Kaonic Helium-3 energy spectrum

More date on K-⁴He 2p level shift

Summary of the results

Experiment	Target	Shift [eV]	Reference
KEK E570	Liquid	$+2\pm2\pm2$	PLB653(07)387
SIDDHARTA (He4 with 55Fe)	Gas	$+0\pm 6\pm 2$	PLB681(2009)310
SIDDHARTA (He4)	Gas	$+5\pm3\pm4$	arXiv:1010.4631,
SIDDHARTA (He3)	Gas	$-2\pm 2\pm 4$	PLB697(2011)199

Conclusions

SIDDHARTA experiment measured the kaonic helium 3d→2p transitions:

- for the first time in a gaseous target for ⁴He
- for the **first time ever for ³He**.

DAΦNE proves to be a **"ideal" kaonic atom "factory".**

The upgrade of the **SIDDHARTA experimental setup**

Precise measurements for the X-ray transitions for kaonic deuterium.

Measuring, with higher precision, the X-ray transitions for Kaonic ⁴He and Kaonic ³He to the 2p level and the first tempt to get the transitions to the 1s level.

Kaonic atoms data (Z>3)

The shift and widths of kaonic atom X-ray energy have been measured using targets with atomic numbers from Z=1 to Z-92, which provide very important quantities for understanding the antiKN strong interaction.

C.J. Batty et al., Physics Reports 287(1997) 385-445

The shifts and widths for kaonic atoms with Z≥3 are systematically well understood;

The optical model expressing the kaonic atom data have been used for calculation of the antiKaonN interaction.

There are discrepancies for:

Removed ⁵⁵Fe source in other data

Very preliminary K-⁴He spectrum

Data taking at DAFNE -Calibration

Data taking at DAFNE - Production

Seminar TUM, 27 June 2011

Very preliminary K-³He spectrum

Comparison of results

Kaonic 4He 2p level shift

	Target	Shift [eV]
KEK E570	Liquid	$+2\pm2\pm2$ eV
SIDDHARTA (w/ 55Fe)	Gas	$+0\pm6\pm2$ eV
SIDDHARTA (New)	Gas	$+5\pm3\pm4$ eV

Kaonic 3He 2p level shift

	Target	Shift [eV]
SIDDHARTA	Gas	$-2\pm2\pm4$ eV
J-PARC E17	Liquid	planned

$$\begin{array}{ll} \text{shift} \ \Delta E_{2p} = E_{\exp} - E_{e.m.} & \Delta E_{2p} > 0 \,(" \, \text{attractive"} \, shift), \\ \Delta E_{2p} < 0 \,(" \, \text{repulsive"} \, shift), \end{array} \\ \end{array}$$

Confirmed the small shift obtained by recent experiment E570 for **Kaonic ⁴Helium**

The "kaonic helium puzzle" for Kaonic ⁴Helium is now solved

The preliminary analysis of the $3d \rightarrow 2p$ transitions for Kaonic ³Helium, indicate that the statistic error shift is less than 3 eV.

Setup improvements during summer 2009 shutdown

- rebuilding of the sdds mounts: gain of solid angle of X ray detectors
- replacement of sdd modules: 144 cm² detectors operational
- new upper kaon detector: less material in vicinity of target, clean trigger
- improved shielding: new multimaterial and more narrow collimator

