

The SuperB Project

A major new particle physics centre

Fergus Wilson, RAL/STFC On behalf of the SuperB Project STORI 2011, October 11th 2011

Outline

- ➢Key Features
- Tour of SuperB Physics
- Accelerator Design Status
- Detector Design Status
- Project Funding
- ► Latest News
- Conclusion and Outlook

Key Features

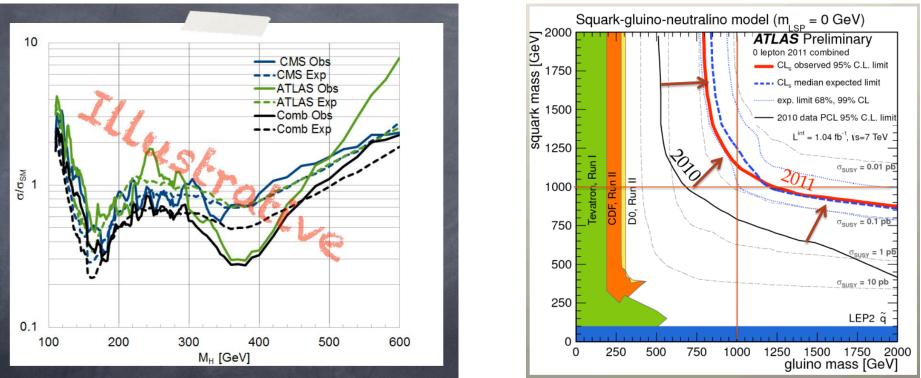
- New European Accelerator Facility to be sited in Italy, ready by ~2016
 - At Y(4S), 6.7 GeV positrons on 4.18 GeV electrons, 1.3 km circumference
 - Y(4S) decays primarily to B-meson pairs.
- High Luminosity (100 x current records)
 - \circ \geq 10³⁶ cm⁻² s⁻¹ : 15 ab⁻¹/year rising to 40 ab⁻¹/year in later years
 - 1 ab⁻¹ => 1 billion B-meson pairs, 1 billion D-mesons and 1 billion tau pairs
 - o **75** ab⁻¹ by ~2022

Polarization

- 60%-85% polarization of electron beam
- Improves physics reach by factor of 2 in some regions
- > ψ (3770) to Υ (5S) and beyond
 - Can scan a large energy range.
- Charm Threshold Running
 - ~4 months running at 10³⁵ cm⁻² s⁻¹ equivalent to 20 x future BES-III dataset.

Light Source

- o 30 x brighter than ESRF or Diamond Light Source.
- Computing
 - On the scale of a non-upgraded LHC experiment.


SuperB Physics Goals – Executive Summary

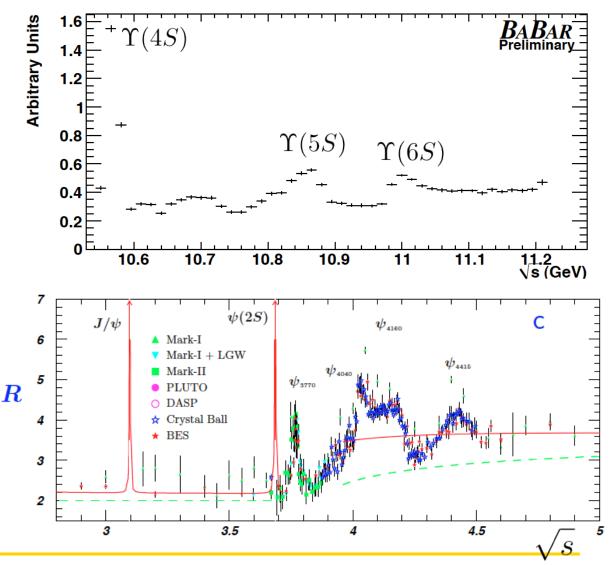
- > Identify the flavour structure of New Physics.
- Sensitive to New Physics through flavour properties; CP Violation asymmetries in B and D decays; and rare decays.
- Probe New Physics scales up to 10-100 TeV through indirect measurements.
- Different New Physics models predict a different hierarchy of results => multiple measurements needed.
- > Search in both the quark and lepton sectors.
- ➢ Golden Channels (good SM prediction + good experimental resolution) e.g. inclusive b→sγ, B→Kυυ, B→τυ, τ→μυυ
- Physics capabilities published in <u>arXiv:1008.1541</u> and <u>arXiv:1109.5028</u>

Higgs / SUSY after Summer 2011

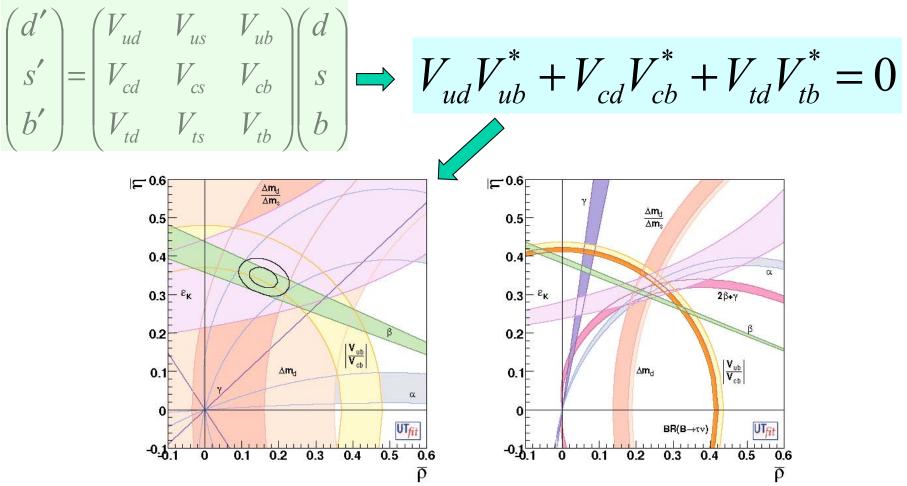
Low Mass Higgs: compatible with Standard Model and SUSY

High Mass Higgs or no Higgs: need to probe higher mass scales.

"Trivial" SUSY is looking increasingly unlikely – need to probe more parameters



\succ Y(4S) region:


- o $75ab^{-1}$ at the Y(4S)
- Also run above / below the Y(4S)
- $\circ~~~75 \times 10^9$ B, D and τ pairs

▶ ψ (3770) region:

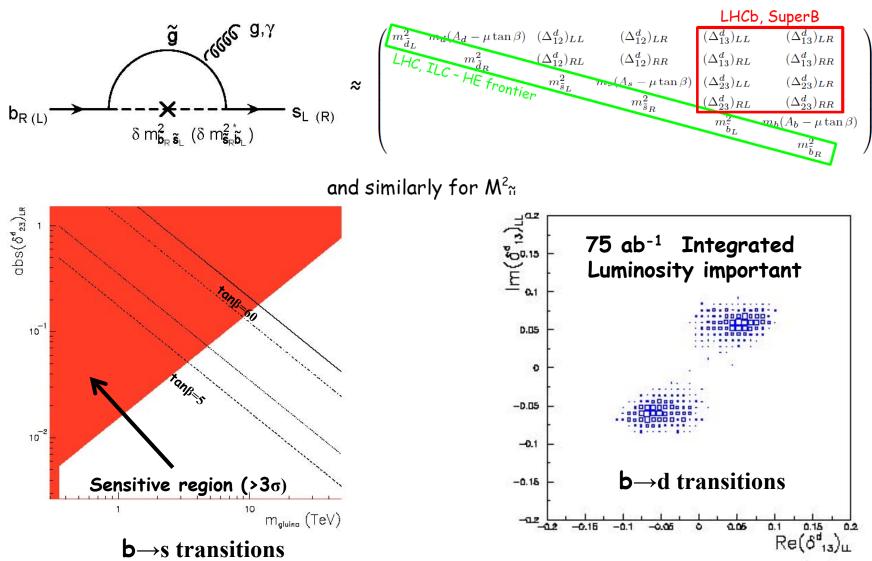
- ~150 fb⁻¹ per month at threshold running
- Also run at nearby resonances
- ~2 x 10⁹ D pairs

Physics: What will the CKM matrix look like in 2022?

Figure 2-1. Regions corresponding to 95% probability for $\overline{\rho}$ and $\overline{\eta}$ selected by different constraints, assuming present central values with present errors (left) or with errors expected at SuperB (right).

Physics: Interplay – The Golden Matrix

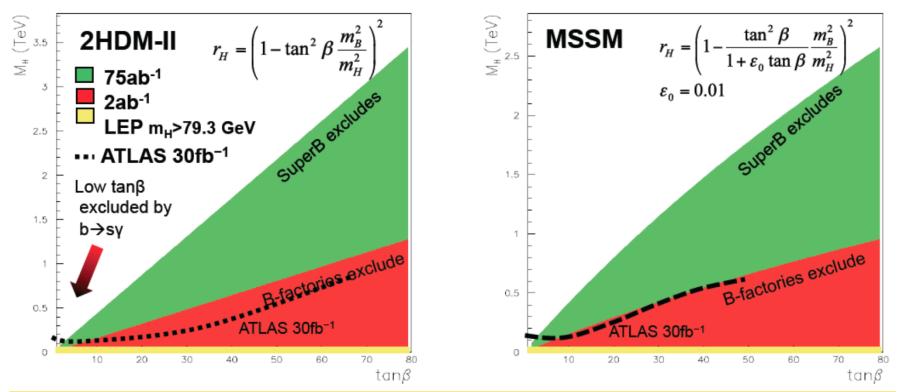
Combine measurements to elucidate structure of new physics.


	Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH	SUSY				
		high $ an eta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
1	$ au ightarrow \mu \gamma$							***	***	*	***	***
1	$ au ightarrow \ell \ell \ell$						***					
	$B ightarrow au u, \mu u$	$\star \star \star (CKM)$										
1	$B \to K^{(*)+} \nu \overline{\nu}$			*	***			*	*	*	*	*
1	$S \text{ in } B ightarrow K^0_{\scriptscriptstyle S} \pi^0 \gamma$					***						
1	S in other penguin modes			* * * (CKM)		***		***	**	*	***	***
1	$A_{CP}(B ightarrow X_s \gamma)$			***		**		*	*	*	***	***
	$BR(B ightarrow X_s \gamma)$		***	*		*						
	$BR(B \to X_s \ell \ell)$			*	*	*						
1	$B \to K^{(*)} \ell \ell$ (FB Asym)							*	*	*	***	***
	$B_s ightarrow \mu \mu$							***	***	***	***	***
	eta_s from $B_s o J/\psi \phi$							***	***	***	*	*
1	a_{sl}						***					
1	Charm mixing							***	*	*	*	*
1	CPV in Charm	**									***	

✓= SuperB can measure these modes

More information on the golden matrix can be found in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.

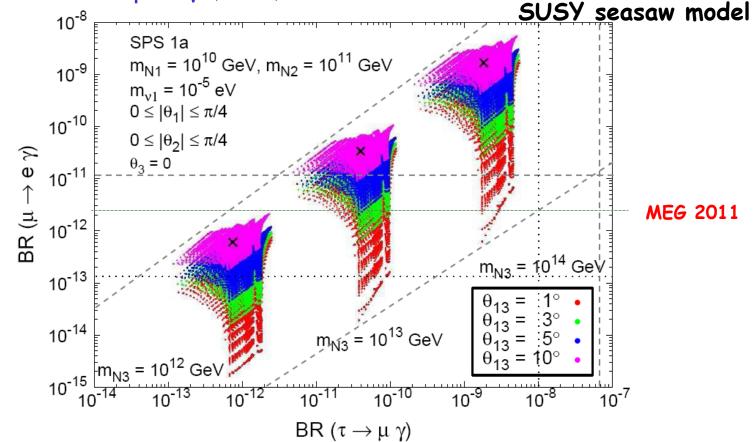
Physics: Overlap with the LHC



8th April 2011

Physics: Charged Higgs (2HDM and MSSM)

- Higgs-mediated Minimal Flavour Violation
- > Multi-TeV search capability for large tan(β).
- > Includes SM uncertainty ~20% from V_{ub} and f_B .
- > $B^0 \rightarrow l^+l^-$ and $B^0 \rightarrow l^-\tau^+$ also sensitive to non-SM Higgs


b

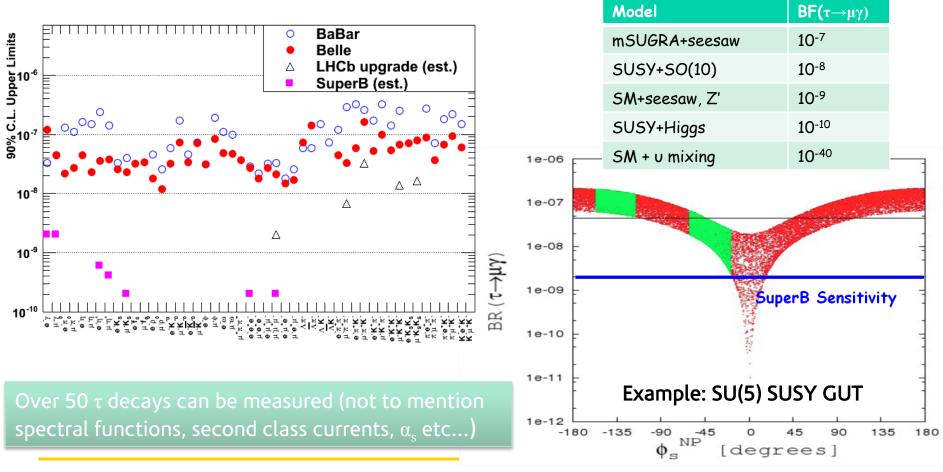
 (H^+,W^+)

11th October 2011

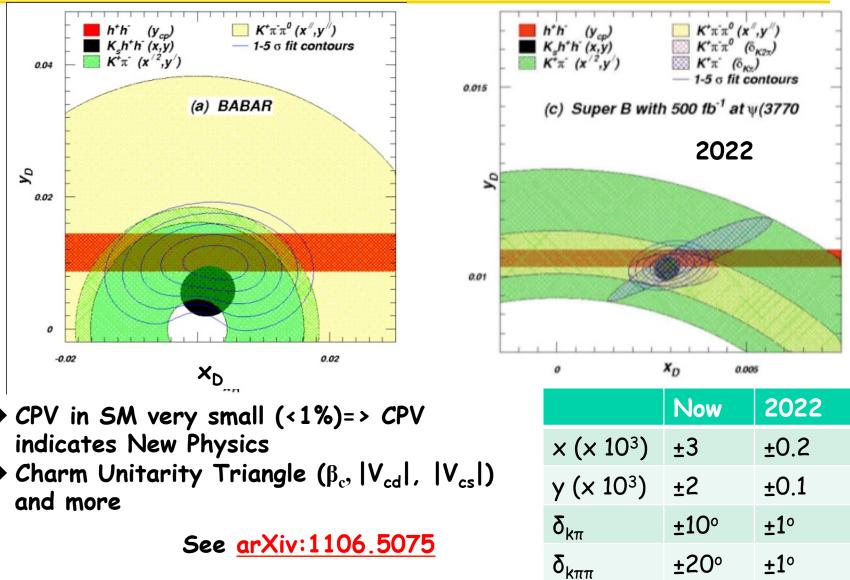
Physics: $\tau \rightarrow \mu \gamma$

> τ > $\mu\gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV, T2K etc.) and also to μ ->e γ (MEG).

Correlated results from T2K, MEG and SuperB


Arganda et al., JHEP, 06:079, 2008.

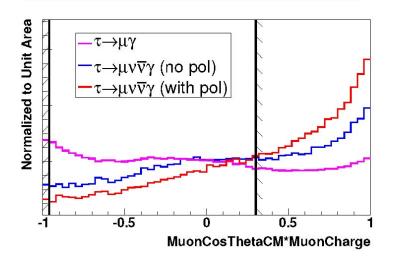
Physics: Lepton Flavour Violation


>Many models predict LFV at the level that can be detected at SuperB >LFV also sensitive to other observable such as μ ->e γ (MEG), θ_{13} (T2K) and B_s mixing phase (LHCb)

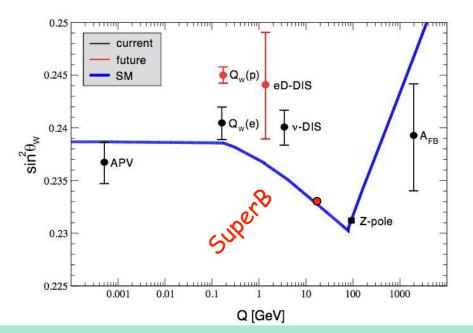
>Polarization doubles sensitivity (not included in numbers below)

11th October 2011

Physics: Charm and Charm CPV



Physics: Benefits of Polarized Electron Beam


1) LFV: Doubles Precision

<u>2) τ EDM, τ g-2:</u>

Measurement could prove or disprove discrepancy in $\Delta \alpha_{\mu}$ due to New Physics. EDM sensitivity ~ 2 x 10⁻¹⁹ e cm > $\Delta \alpha_{\tau}$ (SM) ~ 10⁻⁶ > $\Delta \alpha_{\tau}$ (SUSY) <~ 10⁻⁵ > $\Delta \alpha_{\tau}$ (SuperB) precision~ 10⁻⁶

$\frac{3) \tau CP Violation:}{Angular distributions}$

4) Electroweak:

Investigate LEP A_{FB} v. SLD A_{LR} discrepancy.
Investigate NuTev discrepancy.
Constrain Higgs mass
Sin² θ_w resolution ±0.00018
Perhaps measure even at ψ(3770)

Physics: B_s decays

SuperB will complement LHCb in some areas \succ Can cleanly measure A^s_{si} using Y(5S) data $A_{SL}^{s} = \frac{\mathcal{B}(B_s \to \overline{B}_s \to X^- \ell^+ \nu_{\ell}) - \mathcal{B}(\overline{B}_s \to B_s \to X^- \ell^+ \nu_{\ell})}{\mathcal{B}(B_s \to \overline{B}_s \to X^- \ell^+ \nu_{\ell}) + \mathcal{B}(\overline{B}_s \to B_s \to X^- \ell^+ \nu_{\ell})} = \frac{1 - |q/p|^4}{1 - |q/p|^4}$ $\sigma(A_{SL}^s) \sim 0.004$ with a few ab^{-1} 2010 Little Higgs (LTH) scenario 15 $\mathbf{5}$ 10 $4_{
m SL}^d/A_{
m SL}^{
m SM}$ $A_{\rm SL}^{s\,{
m SM}}$ -10 -20-15-25-1-0.50.50.1 0.20.3 n 1 0 $S_{\psi K_S}$ $S_{\psi\phi}$

SuperB can study rare decays with many neutral particles, such as $B_s \rightarrow \gamma \gamma$, which can be enhanced by SUSY.

Physics: Spectroscopy and exotic resonances

Tetraquark

Hybrid meson

Pentaguark

Glueball

(2000 4750 4750 4500 (4320) 8 4250 x(4160) Z⁺(4430) Some expected samples in $50ab^{-1}$: Y(3940) 4000 4040) $B \rightarrow X(3872)K$: ~10,000 events Z(3930) X(3872) X(3872 3750 ψ(3770) threshold $Y(4260) \rightarrow J/\psi \pi^{+}\pi^{-}: \sim 30,000 \text{ events}$ w(2S) 3500 $Y(4350) \rightarrow \psi(2S)\pi^+\pi^-$: ~3000 events 3250 Established $Y(4660) \rightarrow \psi(2S)\pi^+\pi^-$: ~3000 events 3000 New States η_(1S) $Z^{+}(4050), Z^{+}_{2}(4430) : 10^{3} - 10^{6} B \rightarrow J/\psi \pi^{+} K, \psi(2S) \pi^{+} K_{2750}$ Theory 2500 **?**? 1" 2" 1" 0" 1" 3-2 2*

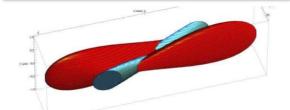
(2S+1)

500

Accelerator: Parameters are stable

Table 3.1: SuperB parameters for baseline, low emittance and high current options, and for tau/charm running.

		Base	Base Line		Low Emittance		High Current		Tau-charm	
Parameter	Units	HER	LER	HER	LER	HER	LER	HER	LER	
		(e+)	(e-)	(e+)	(e-)	(e+)	(e-)	(e+)	(e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00F+36		1.00E+36		1.00E+36		1.00E+35		
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	m	1258.4		1258.4		1258.4				
X-Angle (full)	mrad	66		66		66		66		
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β _y @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
Emittance y	pm	5	6.15	2.5	3.075	10	12.3	13	16	
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	
Buckets distance	#	2		2				1		
Ion gap	%	2		2		2		2		
RF frequency	MHz	47	476.		476.		476.		476.	
Revolution frequency	MHz	0.2	0.238		0.238		0.238		0.238	
Harmonic number	#	1998		1998		1998		1998		
Number of bunches	#	978		978		1956		1956		
N. Particle/bunch (10 ¹⁰)	#	5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37	
σ_x effective	μm	165.22	165.30	165.22	165.30	145.60	145.78	166.12	166.67	
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.0254	0.092	0.092	
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
$\Sigma_{\rm x}$ effective	μm	233.35		233.35		205.34		233.35		
Σ _y	μm	0.050		0.030		0.076		0.131		
Hourglass reduction factor		0.950		0.950		0.950		0.950		
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.17	
Momentum compaction (10 ⁻⁴)		4.36	4.05	4.36	4.05	4.36	4.05	4.36	4.05	
Energy spread (10 ⁻⁴) (full current)	dE/E	6.43	7.34	6.43	7.34	6.43	7.34	6.43	7.34	
CM energy spread (10 ⁻⁴)	dE/E	5.0		5.0		5.0		5.0		
Total lifetime	min	4.23	4.48	3.05	3	7.08	7 73	11.4		
Total RF Wall Plug Power	MW	16	.38	12.37		28.83		2.81		


arXiv:1009.6178

Tau/charm threshold running

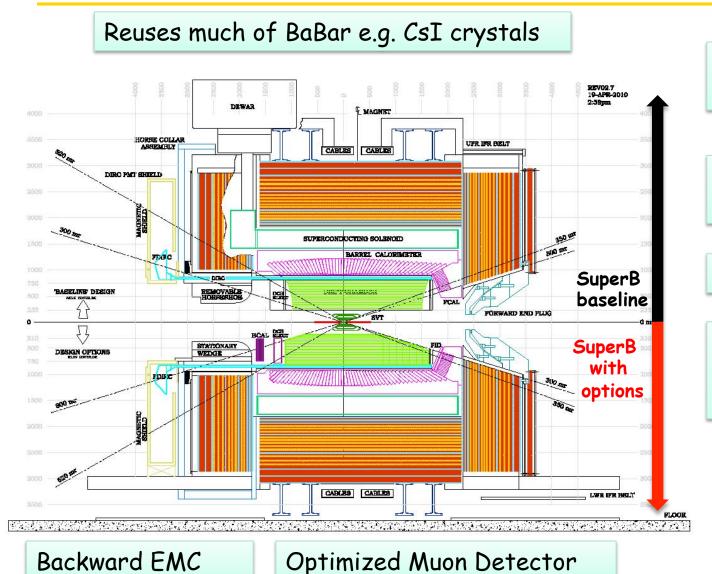
Flexibility built in, no single critical element

Upgradable to 4x higher lumi

Piwinski angle and crabwaist crossing test at $Da\Phi ne$

Low power < 20MW

11th October 2011


Photon Light Source SPECTRAL BRIGHTNESS BEND MAGNE 10²⁰ NSLSII SuperB LER 10¹⁹ SuperB HER APS ALS ESRF **ELETTRA** PETRA III SuperB HER SuperB LER **PETRA III** 10¹⁶ | NSLS II APS ELETTRA ALS **ESRF** 10¹³ 10¹² 10³ 10² 10⁵ 10^{4} 10⁶ 10^{1} 6 photon energy [eV]

11th October 2011

Detector: Design [arXiv:1007.4241]

Improve Vertex resolution x 2

TOF Forward PID

Cluster counting in drift chamber (improves dE/dx)

11th October 2011

SuperB – Funding and Developments

- SuperB approved through primary law by Italian parliament, December 14th/15th 2010.
- Parliament also approved INFN "Piano Triennale" 2010-2012 funding profile which includes SuperB.
- > SuperB is an Italian national flagship project.

> Funding:

- 19M€ in 2010, 50M€ per year thereafter until EOY 2015. SuperB is the only project receiving multi-year funding so far.
- ~120M\$ in-kind contribution from US through use of PEP-II machine components and BaBar detector.
- 50M€ allocated for Tier 2 Grid computing centres in Southern Italy.
- Italian Institute of Technology (IIT) may contribute to beam-lines for photon science.
- > Only ~25M€ needed from international collaborators for detector

Site Decision announced May 30th 2011

Tor Vergata University Campus

"N. Cabibbo Laboratory

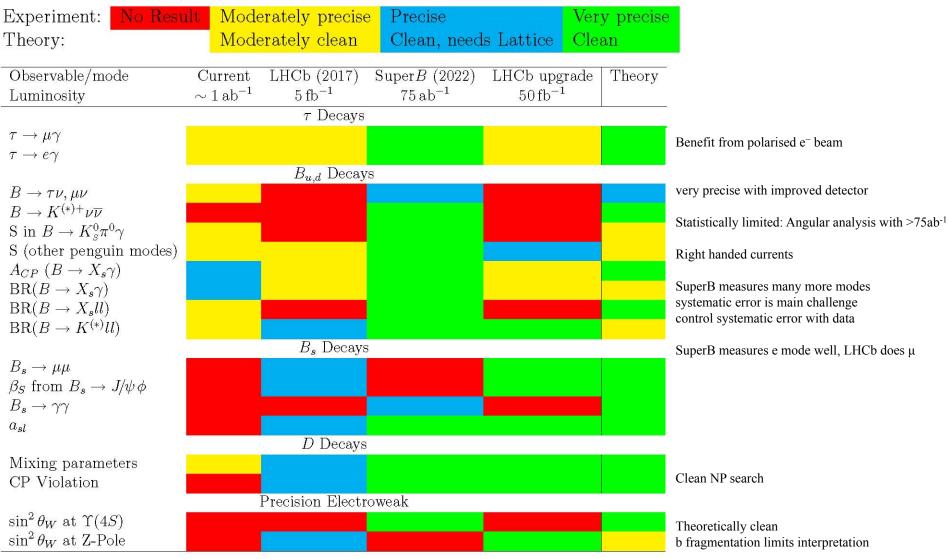
About 4.5 Km

Serre 2011 Tele Atlas You are here !

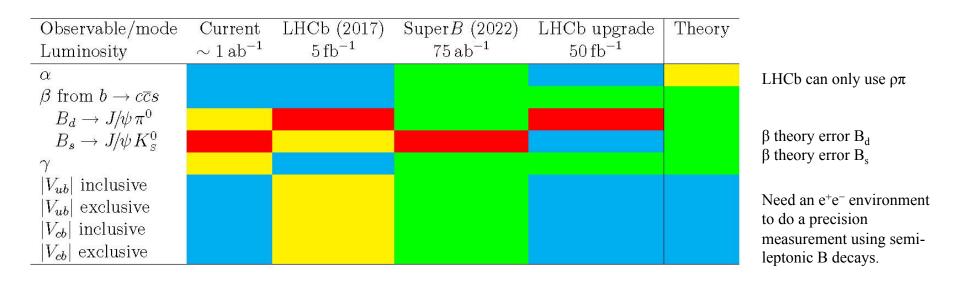
Italian Government approval given on September 29 2011

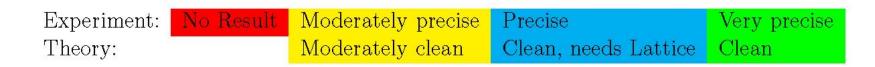
11th October 2011

Conclusion and Outlook

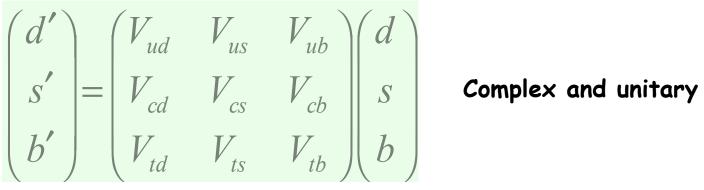

- August 2010: Physics, Accelerator, Detector reports published.
- December 2010: SuperB approved by the Italian Government, as a "Flagship" project.
- > May 30th 2011: Site selection announced.
- September 29th 2011: N. Cabibbo Lab approved by Government
- A unique opportunity for Europe and International Collaboration.
- > The necessary funding is in place.
- First beams in 5 to 6 years. 15 ab⁻¹/year rising to 40 ab⁻¹/year.
- Collaboration is still growing. Working towards TDR. Opportunities in detector, accelerator, computing and physics.

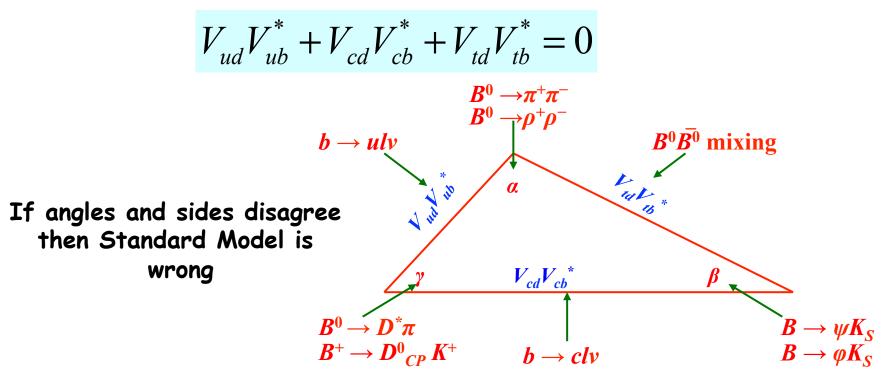
Golden measurements: General




11th October 2011

Golden Measurements: CKM


Comparison of relative benefits of SuperB (75ab⁻¹) vs. existing measurements and LHCb (5fb⁻¹) and the LHCb upgrade (50fb⁻¹).



CKM Matrix and Unitarity Triangle

