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This is about the detectors, 
not the machines or the physics.

“Now I see.  The experimentalist connects the 
nut and the bolt to the Feynman diagram.”

                                                      - Sung Keun Park (student)
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Parallel to the evolution of the machines, their detectors have evolved 
driven by two terms:  

(1) the current realizations or expectations for physics:
•  “can we see collisions?” [Ada]      
•  “can we check QED?” [Adone]       
•  “the photon couples to everything” [SPEAR, Richter, 1971]     
•   searches and studies:   c,  τ, b,  t,  Z,   H  

(2) the available technologies 

for tracking:
•  two scintillators in coincidence       
•  spark chambers, first optical then electronic      
•  MWPCs    
•  drift chambers    
•  TPCs, at PEP, LEP, sophisticated ILC/ILD TPCs  
•   silicon strips/pixels        

and for calorimetry:
•  two scintillators in coincidence
•  “dagwood” calorimeters: LAr/gas/scint/PFA    
•   dual readout calorimeters

Dagwood sandwich
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machine exp “vision” B p pID EM Had ..
CBX, ‘63 e

+
e
− → X QED 0 - - ∞ ∞

ACO,’66 e
+
e
− → X QED 0 - ∞ ∞

AdA, ’68 e
+
e
− → X QED 0 - ∞ ∞

Adone, ’69 e
+
e
− → X QED 0 ∞ ∞

CEA, ’71 e
+
e
− → X QED 0 - - ∞ ∞

SPEAR, ’72 Mark 1 e
+
e
− → γ

∗ .5T SC - 100% ∞
Mark 2 b, t 0.45T DC 10% ∞
Mark 3 c, τ 1.0T DC 10% ∞

’75 DELCO c .5T PWC e ∞ ∞
DORIS, ’73 ARGUS c, b 10% ∞

CrystalBall → γ 0T PWC eγ 2% ∞
DASP c 0 T DC 10% ∞
PLUTO c, b 1.7T ... 10% ∞

VEP-2, ’74 OLYA ...
CMD-3 c, τ 1.5T DC
SND ud, c, τ 1.35T DC
KEDR .. 0.6T DC µeπK 5% ∞

PETRA, ’78 JADE t 0.45T 4% ∞
Mark-J t 0T 2% ∞
PLUTO t 1.7T 20% ∞
TASSO t 0.5T 15% ∞

CESR, ’79 CUSB c 0.44T DC 2% ∞
CLEO-n b 1.5T DC µeπKp 2% ∞

PEP, ’80 Mark2 ” 0.45T DC µe 10% ∞
HRS ” 1.6T DC µe 20% ∞
MAC ” .6T DC µ 30% ∞

’82 TPC t, b, c 1.5T TPC µeπK 40% ∞
TRISTAN, ’87 TOPAZ ... t 1.2T TPC µeπKp 20% ∞

VENUS t 0.75T DC 20% ∞
AMY t 3.0T DC 30% ∞

LEP I, ’89 ALEPH Z 1.5T TPC µeπKp 10% 100%
DELPHI Z 1.2T TPC µeπKp 20% 200%

BEPC, ’89 BES-n c, τ 1.0 DC 2% ∞
SLC, ’90 Mark-2, SLD Z

0 0.6T DC µe 10% 100%
VEPP-4, ’94 KEDR b 0.6T DC µeπK 4% ∞
DAΦNE, ’99 KLOE CP 8% ∞
PEP2, ’99 BaBar b 1.5T DC µeπKp 3% ∞
KEK2, ’99 Belle b 1.5T DC µeπKp 3% ∞
VEPP-2000 SND udc 1.35T DC 3% ∞

CMD-3 udc 1.5T 5% ∞
ILC, 2015 ILD W,Z,H 3.5T TPC µeπKpWZ 20% 35%
CLIC, 2020 SiD W,Z,H 5.0T Si µeWZ 20% 35%
µColl, 2030 4th W,Z,H 3.5T DC µeπKpWZ 10% 29%

1

Some numbers, not all correct 
to be sure; for the ILC, SiD 
and ILD were “validated”, 

but 4th was not, by the 
advisory committee IDAG.
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The next detector must measure and identify
all quarks, leptons and gauge bosons 

This is to be contrasted with all previous lepton collider 
detectors that addressed, for example, c and τ, or b, or Z, ... 
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ALEPH:   Steinberger pre-collaboration meetings
                 “We had open meetings about once a week ... at which all  

important design features .. were ... decided.”  

Magnetic Detector:   Richter

• “The magnetic field should be a superconducting solenoid with 1.5 Tesla ... a 
technical challenge.”
• “The main tracking should be ... a TPC.”
• “The electromagnetic calorimeter  should be optimized for spatial rather than energy 
resolution ... for particle identification.”
• “The hadron calorimeter should use the iron return yoke.”
• “The detector naturally consists of a ‘barrel’ and two ‘end caps’.”

“While SPEAR was being designed, we were ... thinking about the [detector].  In the 
1965 SPEAR proposal, we had described two different kinds of detectors:  the first, a 
non-magnetic detector that would have looked only at particle multiplicities and 
angular distributions, with ... crude particle-identification ...;  the second, a magnetic 
detector that could add accurate momentum measurement ...”

Proceeding in the order of Steinberger ... Magnetic field, Tracking, EM 
calorimetry, Hadronic calorimetry, and overall Geometry
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Magnetic Field  (CMS)

U = 1
2µ

�
B2dV
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The CMS solenoid and muon system is the standard for almost all detectors, 
and follows from the SPEAR Magnetic Detector.  

The lepton detectors at the ILC have a solenoidal field for tracking, but the 
iron return yoke is unnecessary:  the flux can be returned by an outer solenoid.
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The turns can be lumped, not rectilinear

* max B is only 5.003T
* fringe field ~zero

Tracking field quality is excellent:
each color is dB/B=0.001

3.5T

-1.7T

M. Wake (KEK) solutions, 
compared to Mikhailichenko’s, 
means there is a continuum of 
interesting solutions available.
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Dual solenoids: scientific advantages

• no iron: cheaper, more flexible detector; outer coil is big but easier than inner.
• precision measurement of muons outside calorimeter and inner solenoid.
• can reverse B field:  cancel detector asymmetries in precision b,c asymmetry 

measurements;  can run at B=0
• can insert specialized detectors in the annulus between the solenoids for new 

searches, new ideas, ...
• exceedingly flexible: can move calorimeter in z, do intra-detector surveying, 

re-configuration of detector, etc., no iron sarcophagus
• can insert a toroid to measure small angle tracks ...
• 15 kt lower mass, all mechanical problems in the IR are easier
• zero fringe field solves many problems, including stray fields on magnetic 

elements of the final focus
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Tracking

For big colliders, there are three possibilities among the 
three ILC contenders:   

•  all-silicon, 5-planes, 5-microns:
•  exceptional spatial resolution, 
•  but only a few points on tracks and requires cooling 

•  a high-performance TPC:
• spectacular spatial detail, 
• but slow and high-mass medium

•  a KLOE-like drift chamber with cluster-timing:
•  “transparent” to x-ray debris in IR
•  spatial precision to 40 μm
•  dN/dx specific ionization particle ID to 3.5%

Text
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Cluster-timing       (new, beyond Charpak)

of every electron cluster

Ultra-low-mass chamber, expect 
~40 µm spatial resolution on each 
of 150 points on a track.

Cluster 
timingfirst

cluster
Measured cluster on 
two different wires
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TPC with ~6% dE/dx
(world record)

using truncated mean 
on 180 samples 

This TPC built by Dave 
Nygren, LBL, in 1970’s, 
analyzed by Gerry Lynch.

Cluster counting is Poisson (no Landau 
fluctuations), expect 3.5% dN/dx 

measurement of specific ionization

KLOE-like drift chamber with 
cluster-timing electronics
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Evolution of the 
curvature 

uncertainties
in tracking 
chambers;

F. Grancagnolo

resolution

multiple 
scattering
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EM calorimetry

Many “easy” excellent solutions demonstrated 
in current experiments:  CsI, PWO, LSO.  

There is nothing more I can add.
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Hadronic calorimetry

A much more difficult and contentious problem. Expensive 
and not fully understood, even by major practitioners.

There are two major R&D efforts today, “particle flow” 
calorimetry and the other on “dual-readout” calorimetry.  I 
will discuss only dual-readout since I believe it will prevail 

as the better choice for high-precision detectors of the future. 

Best single reference on dual-readout is the proposal to the SPS Council:

 “Dual-Readout Calorimetry for High-Quality Energy Measurements,” 
R. Wigmans, DREAM Collaboration, CERN-SPSC-2010-012, 

SPSC-M-771, 31 March 2010.
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The simple proof-of-principle DREAM module
These extruded tubes 
are just stacked up to 

make the module

Scintillation
fibers see 

all charged

Cerenkov fibers mostly
see relativistic electrons

fEM  = EM fraction

Fluctuations in the EM fraction are 
responsible for almost all of the problems 
of hadronic calorimetry:  measurement of 
fEM  event-by-event solves these problems.
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Basic dual-readout:  “Hadron and Jet Detection with a 
Dual-Readout Calorimeter”  NIM A537 (2005) 537-561.
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 The asymmetric, non-Gaussian, broad, off-energy response 
function is the sum of narrow Gaussians !
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Dual readout in BGO crystals

BGO scintillation

Cerenkov light

Cerenkov

BGO scintillation

Single cosmic muon
(2 PMTs)

100 ns/divA. Cardini, Cagliari

e- beam, 1PMT

L3 BGO   
crystal
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pion, e-
beams

DREAM           

BGO        

Dual-readout calorimeters
(CERN beam tests)

(Will answer K. Hara’s question.)
The DREAM Collaboration (Cagliari, CERN, 

Cosenza, Iowa State, Pavia, Pisa, Rome, Texas Tech)
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SS’ vs CC’_py
Entries  38382

Mean    204.3

RMS     11.46

 / ndf 2!  514.7 / 67
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BGO+fiber calorimeter
at 200 GeV

DREAM data

4th 
simulation
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28

Single π
Di-jets (total energy)

4th dual-readout simulation performance up to 1 TeV
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Hadronic response linearity

e-  calibration

ILC beam energy
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Particle Identification
    (most of these are completely new 
                in high energy physics)

•  uds quarks    (jet energy resolution)
•  c,b  quarks    (vertex tagging)
•  t quark          (reconstruction) 

•  electron        (dual-readout)
•  muon            (dual-readout and iron-free field)
•  tau                (reconstruction)
•  neutrino        (by subtraction; energy resolutions)

•  W,Z               (hadronic jet reconstruction)
•  photon          (BGO dual readout)
•  gluon            (jet energy resolution)
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DREAM data 4th simulation (45 GeV)

S vs. C            e - µ - π± 
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Fluctuations in (S-C) among the channels of a shower           EM-hadron

χ2 =
�N

k [ (Sk−Ck)
σk

]2 ∼ 0 for e±, large for π±
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Time-history S(t) scintillating fibers

SPACAL data

duration of pulse above 1/5-maximum

            e/γ - π±/hadrons 
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improve energy resolution, 
ID for “hadronic” objects

MeV neutrons, and 
neutron fraction, fn

fn

fEM

(DREAM data)

Time-history S(t) scintillating fibers
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DREAM data

DREAM dataTime-of-flight

(Cerenkov fibers)
σ  ~ 0.3 ns

Muon tagging 

    S-C ~ dE/dx (muons)

    (S+C)/2 ~ Ebrems

Muons Pions

S-CS-C

(S
+C

)/2

(S
+C

)/2

t (0.4 ns bins)
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CluCou data
(two different tubes)

dN/dx by 
cluster-counting 

dN/dx is Poisson, no 
Landau tail:  better 
specific ionization 
resolution ~3% 

dE/dx resolution TPC LBL/PEP4 (data 
using truncated mean, resolution~6%)
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τ± ID

(for
polarization)

τ− → ρ−ν
→ π−π0

→ π−γγ

EM crystal

Hadronic
fiber
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W and Z mass measurement and discrimination

hstdhepMj1j2WstdhepMj3j4W_signal_numjets4_Evis_numpartsinjets_numtracks_MChisqrtgoodW

Entries  9445
Mean    78.69
RMS        10

 / ndf 2  172.626 / 309
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p4        2.002± 73.115 
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p9        0.1833± 2.5562 
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Mass, GeV
120 140 160 180 200 220 240 2600
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hmsum
Entries  21464
Mean    185.3
RMS     25.61

 / ndf 2  291.061 / 173
nevents   118.8± 10052.7 
m         0.059± 174.206 

    0.05528± 4.65446 
pol0      3.269± -208.198 
pol1      0.03029± 1.74404 
pol2      0.00019692± 0.00195336 
pol4      7.29270e-07± -1.97843e-05 

e+e− → tt→ bW+bW− → 6 jets

Fedor Ignatov (Budker 
Institute, Novosibirsk)

top quark       (all hadronic channel)
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b,c quark tagging   (by lifetime of B,D mesons in silicon pixel vertex chamber)                   

vertex impact parameter

(Fedor Ignatov, Budker Institute)

Wednesday, October 12, 2011



4th

KEK

DESY SLAC

Geometries
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Summary 

A big detector is a technically and socially 
complex instrument that takes more than 10 years 

to design and build, and will likely run in 
colliding beams for 10-20 years.  The next big 

detector (e.g., for the International Linear 
Collider, CLIC, or a Muon Collider) must be 
near-perfect.  There are active R&D efforts in 
tracking, calorimetry, silicon pixels, and DAQ.
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KLOE is a very well 
understood chamber

KLOE data

Cluster timing tracking chamber:   (measure every cluster)
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Scintillation

Cerenkov

BGO borrowed from L3

PMT PMT

UV
filter

yellow
filter

“Cerenkov”“Scintillation”

We can now do dual-readout in a single crystal ==> EM precision

cosmic muon

BGO ...
by time and 
wavelength

(100 ns/div)

Alessandro Cardini, INFN, Cagliari
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Crystal DREAM:   one PMT/crystal with time-history readout 

Cerenkov

Scintillation
L3 BGO crystal
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4. neutron fraction, fn

• measured by time-history 
of scintillation light 
(“hadronic” ID)

• anti-correlated with the 
electromagnetic fraction

...  also use this 
to improve the 
hadronic energy 
resolution.
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We also calculate fn from Spe(t) time-history4. (continued)

t
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dN/dx by cluster-counting:  specific ionization resolution ~ 3.5%

TPC with ~6% 
dE/dx resolution

π - K - p  identi!cation
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 π rejection ~ 105:1

S-C (GeV) S-C (GeV) 

(S
+C

)/2
   

(G
eV

) 

S-C (GeV) 
(S

+C
)/2

   
(G

eV
) 

200 GeV µ- 200 GeV π-

µ vs. π     dual-readout:  θCher > θnum. aperture 
(S~dE/dx+brems    &   C~brems)

S-C ~ dE/dx ~ 1.1 GeV (in DREAM) for µ
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100 GeV µ- 100 GeV π-

(S
+C

)/2
   

(G
eV

) 

(S
+C

)/2
   

(G
eV

) 

S-C (GeV) S-C (GeV) 

π rejection  ~ 104:1

µ vs. π     dual-readout:  θCher > θnum. aperture 

Wednesday, October 12, 2011



40 GeV µ- 20 GeV π-

π rejection~103:1

(S
+C

)/2
   

(G
eV

) 

(S
+C

)/2
   

(G
eV

) 

S-C (GeV) S-C (GeV) 

µ vs. π     dual-readout:  θCher > θnum. aperture 
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Tau ID by reconstruction of pi-zero and charged pion9.

(result from V. Di Benedetto, INFN, Lecce)

BGO

Fibers

τ+ → ρ+ν

ρ→ π+π0

π+

Two γ EM showers

π+ hadronic shower
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9. (continued)

two
clear

photons

S~C
(EM)

one
clear 

shower

S>C
(hadronic)

(C in BGO)(S in BGO)

(S Fibers) (C Fibers)
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