

Muography:

overview, applications and future developments

Giulio Saracino

Università degli studi di Napoli Federico II

INFN sezione di Napoli

MuonX SPA

Summary

- Introduction to muography
- Some applications
 - Nuclear safety and safeguarding
 - Volcanoes
 - Archeology
 - Cavities detection
- Conclusions and perspectives

Muons and muon radiography

Cosmic muons are produced in the upper part of earth atmosphere by the primary cosmic radiation reaching the earth's surface

They have an incredible ability to penetrate matter and, at the same time, are easily detectable

Two different physics process at the base of muon radiography techniques

Energy Loss -> M.R. by transmission Coulombian Multiple Scattering -> Muon tomography by scattering

Sometime a mix of the two techniques, called absorption, is used

Muon radiography by transmission (I) $_{\mu}$

Muons lose energy by interacting with atoms. The energy loss depends mainly on the density of the material and less on its atomic number.

Material opacity $x = \rho d$

Product of density and distance

 $dE/dx \simeq A+B \ln(E)$

The range of a muon of fixed energy depends on the opacity Since the muon energy spectrum is continuous, the measured flux is related to opacity

Similar to x-ray radiography:

the intensity of radiation measured in a certain direction depends on opacity passed through

M.R. by transmission (II)

Transmission is measured using a muon tracker positioned downstream with respect to the investigated volume The measured flux is compared with the expected one, computed by simulation models. Large volume can be investigated

Measurement from a single observation point provides a 2D image of the average density distribution. Combining more measurements from different points 3D information can be provided

Suitable for the determination of density distribution and for the detection of cavities in large volumes

M.R. by multiple scattering (muon tomography)

Interactions with the atomic nuclei deflect the muon trajectory The amount of scattering depends on opacity and atomic number Z Two muon trackers measure the direction of the incoming and outcoming muons. Realistic detector sizes limit the volume investigated 3D native

 $\theta^2 \propto xZ$

Suitable for the determination of high Z material

absorption method measures the incoming muons that are stopped by the material using a simple veto detector downstream

Examples of applications

SCATTERING:

- Nuclear material imaging
 - Container scanning for illegal transport and security
 - Nuclear waste drums scanning
 - Inspection of basket of exhausted bars
 - Nuclear reactor

• Industrial application

- Reinforced concrete
- Pipelines imaging
- Blast furnace (density distribution and deterioration of the walls)
- Medical applications (?)

ABSORPTION

- Geophysical survey
 - Volcanoes
 - Cavity or density anomalies (safety, safeguarding, and archeology)
 - mineral deposit exploration
 - Underwater bradyseism

• Industrial application

- Blast furnace
- Dam inspection
- Reinforced concrete
- pipelines
- Buildings stability monitoring
- Environmental survey
 - Glacier thickness
 - Stratosphere temperature dynamics

Muon radiography tracking detectors

Actual characteristics depend on the specific application. As example:

Detector Characteristic	Scattering	Transmission
Surface area	\gtrsim 1 m ² X 2	$\lesssim 1 \text{ m}^2$
Spatial resolution	\lesssim 1 mm	\gtrsim 1 mm
Volume to be investigated	$\lesssim 100 \text{ m}^3$	>> 100 m ³
Dimension of the object to be resolved	\lesssim 10 cm	\gtrsim 1 m
3D imaging	yes	possible
Acquisition time	\gtrsim 1 min	\gtrsim 1 day

Transportability, robustness and low power consumption are also required for applications outdoors

Muon radiography detectors technologies

- SCINTILLATOR BASED
 - Plastic bars with or without WLS fiber, PMT or SiPM
 - Fibers with MA-PMT or SiPM
- GAS BASED
 - Drift Tubes (5 cm in diameter)
 - RPC
 - Micromegas
 - multi-wire proportional chamber
- Nuclear emulsion
- Air Cherenkov telescope

Examples of technologies in use in muon absorption

Plastic scintillators with Photomultiplier tubes or Silicon photomultiplier (PMT o SiPM)

Gas detectors RPC, wire chamber, micromegas

Nuclear emulsions and RICH

Which is the best technology ?

It depends on the specific application. Each technology has pros and cons

Scintillator and gas detectors are electronic devices : they gives results in real time but they need electricity and take up some space.

Nuclear emulsions are very compact , don't need electricity and have good spatial resolution. But they are complicated to analyze and results can be obtained some time after the exposure.

Gas detector are less stable than plastic scintillator, they need gas and high voltage. But they are less expensive (per square meter) and can provide better spatial resolution than scintillators at reasonable costs.

Case studies

Monitoring nuclear reactor fuel in dry storage cask (DSC)

Verification of their content prior to permanent storage in a geological repository

Routine verifications or re-verifications in case of a loss of continuity of knowledge

Typical DSCs as CASTOR[®] V or Westinghouse MC-10 have height of about 5 m, an external diameter of 2.4 m and a mass of more than 120 tons Concrete and steel shielding reduce the radioactivity but prevent the inspection with traditional procedures. The presence of the other casks disturbs the methods based on radioactivity measurement Visual inspection can be performed only in dedicated water pool

A test at the Idaho National Laboratory (USA) A canister with some missing fuel assembly

Los Alamos National Laboratory)

1.2 m x 1.2 m drift tube gas trackers X-Y measurement

Comparison data and simulation

J.M. Durham, et al., Phys. Rev. Appl. 9 (2018) 044013.

The MUTOMCA project

INFN, FZJ (Germany), BGZ company (Germany), e European Commission, Directorate-General for Energy.

Two drift tubes based trackers that can be rotate around the cask

200

100

0

-100

-200

Safety application Nuclear materials stored in legacy waste containers

In 2009 UK Nuclear Decommissioning Authority (UK NDA) and Sellafield Ltd funded a project, now Lynkeos Technology LTD start-up.

imaging 500-litre stainless-steel intermediate level waste (ILW) drums containing cladding material stripped from uranium fuel rods encapsulated within concrete containing also unknown quantity of fuel fragments.

Full-scale demonstrator Muon Imaging System installed at the National Nuclear Laboratory (Sellafield, UK). 1m² scintillating fiber trackers

Nuclear materials stored in legacy waste containers: experimental test

bottommost horizontal core: uranium sample cylinder 20x30 mm² uppermost horizontal lead core 90 mm×40 mm×20 mm.

Mahon D. et al. 2019. Phil.Trans.R.Soc. A377

Muon radiography by transmission

Study of volcanoes

Cavity detection -> archaeology, safeguarding

Industrial application: blast furnace

The study of volcanoes

The study of volcanoes: the MU-RAY Project

- 2009-2012: MURAY funded by INFN
 - Electronic detector R&D dedicated to volcanic applications
 - Low power consumption
 - Robust
 - Transportable
 - Good angular resolution
 - TOF background rejection
- Progetto Premiale 2012 MURAVES Muon Radiography VESuvius
 - In collaboration with Vesuvian Observatory INGV (NA) (operational since March 2015)
 - laboratory at Vesuvius: 3 detectors with 4 X:Y tracking stations of 1m²

32 Plastic scintillators + WLS 2-3 mm resolution

Elettronica front end ASIC EASIROC (OMEGA) FPGA HV on board 32 Ch 2W power

Giulio Saracino Muon4Future

PCB 32 SiPM termally controlled (FBK)

DAQ board

FPGA + Raspberri-Pi 384 channels

MURAVES

The laboratory 4.5m x 9.6m x 2.5m

The MURAVES experiment: the laboratory

The MURAVES experiment: preliminary results on a reduced data sample

	SPATIAL RESOLUTION			
	Δx	Δу		
layer 1	180 m	26 m		
LAYER 2	210 m	52 m		
LAYER 3	315 m	52 m		

- Vertical resolution better than orizonthal resolution to highlight the expected layered structure
- layers are symmetrically divided in two parts to evaluate density right/left asymmetries

Giulio Saracino Muon4Future

CAVITY DETECTION

Cavity detection: Giza pyramid complex

A comparison between Cheope and Chefren pyramids

externaly they are very similar, this is not the case with regard to known internal structures

1969-70: Alvarez

looking for possible unknown cavities with muon radiography

He installed one of the most advanced detectors of the time in the Belzoni chamber

The first muon radiography image ever obtained

Raw data N W Pyramid geometry correction No evidence of the presence of a unknown chamber (but only the 19% of the volume was observable....)

First correction for the detector geometrical acceptance

Simulated data with a void

The SCAN Pyramids project

The scan pyramids big-void discover in Khufu (Cheope)

Three different technologies: nuclear emulsions, gas detector, plastic scintillator detector

The scan pyramids big-void discover 2016

Clear signal of an unknown void is seen with the emulsion detectors A

Observed Muon flux: Red means an excess of muons Know voids: B great gallery ; A the king room Unaxpected signal: C K. Morishima et al. N AT U R E VO L 5 5 2 2 1 / 2 8 D E C E M B E R 2 0 1 7 doi:10.1038/nature24647

2023: The Nord Face Corridor (NFC)

Evidence of a new structure of about 9 m length with a transverse section of about 2.0 m by 2.0 m.

Nat Commun. 2023; 14: 1144.

The test site: Mt. Echia

m a.s.l. 60 50 40 30 200 Nord(m) -100 400 300 -200 200 Est (m) 100 -400 -200 -100 0 -300 400 -500 Digital Elevation Model

Mt. Echia

Giulio Saracino Muon4Future

Bulk: Neapolitan yellow tuff ρ 1.2÷1.4 g/cm³

Maximum altitude: 60 m a.s.l.

Mt Echia: a complex system of cavities

The observation position

12 m a.s.l

35 m deep

The Test: Detect a room on the top of the detector position

Other voids inside the detector acceptance

The expected signal from the test chamber

Since the test chamber is known, we can evaluate the expected shape

Giulio Saracino Muon4Future Muon radiography

The muographic image

Giulio Saracino Muon4Future Muon radiography

Comparison with known cavities

Three different measurements with two detectors

The three muographies

44

3D reconstruction algorithm

We reconstructed the possible shape and position of the void

3D reconstruction algorithm

By reporting the points of the cavity on the surface, the position where the well entrance could be found was located

Site inspection

Identified a trap door with underlying cellar and an obstructed well that could put the hidden chamber in communication with the surface

Cimmino, L., et al. Sci Rep 9, 2974 (2019). https://doi.org/10.1038/s41598-019-39682-5

A cylindrical detector for borehole muography

Cimmino, L. Sci Rep 11, 17425 (2021)

48

Design of a new detector with a cylindrical shape

Borehole muography opens to very interesting prospectives The shape of the well suggest the use of a cylindrical geometry to maximize the sensitive surface

Based on arc shaped scintillators and SiPM (patented)

Tunnel's detection

Tunnel: 100 m long and 1 m radius at a depth of 5 m.

Relative transmission (20 days)

Simulation

cylindrical detector at a depth of 15 m and at a lateral distance of 20 m

Conclusions

Muons: useful tools for the safety and safeguarding Multiple scattering -> detection of nuclear material Transmission -> cavity detection and geological survey

Many activities in progress in different fields

Start-up companies started commercial applications

Start-up in Muon Radiography

Company	Founded	Country	Main application	Tecnolgy
Decision Sciences	2001	USA	Cargo scanning, nuclear fuel cask monitoring	MS
Lingacom	2012	Israel	Cargo scanning, ground survey	MS, TR
CRM GeoTomography now Ideon Technologies Inc.	2013	Canada	Mining exploration -> oil and gas, infrastructure, national security	TR
Muon System	2015	Spain	Industrial application, cargo scanning	MS, TR
Lynkeos Technology	2016	UK	Nuclear	MS
Muon Solutions	2016	Finland	Mining exploration	TR
GSCAN	2018	Estonia	Nuclear safety	MS
GEOPTICS	2020	UK	Geological, industrial, nuclear	TR, MS
MUODIM	2021	FR	Geological	TR
MUONX	2022	IT	Geological. nuclear	TR, MS

A large community is connected all over the world. Every year we have an international meeting

Muographers2023 - International workshop on muography

Jun 19 – 22, 2023 Naples Europe/Zurich timezone

Enter your search term

https://indico.cern.ch/e/muographers2023

Giulio Saracino Muon4Future

Q

THE END

Safety application: Muon tomograph

PREDIS = The Pre-Disposal Management of Radioactive Waste project (EURATON years duration)

The *PREDIS* project develops and increases the Technological Readiness Level of treatment a wastes for which no adequate or industrially mature solutions are currently available, including wastes and solid arganic waste

waste and solid organic waste

INFN muon tomography is in WP7: *Innovations in cemented waste handling and pre-dispos*

T7.3 Test and Monitoring

T7.6 Demonstration and implementation

metallic (stainless steel – lead – tungsten) pieces of various shape and dimensions (order of 1-10 cm

The MURAVES experiment: goal measurement

The MURAVES experiment: measurement feasibility

New measurements starting in 2022

The EGP project (Exploring the Great Pyramid): tomographic imaging with muons

from outside the pyramid

Principles of cavity detection

How to detect a cavity: the relative transmission R

The transmission T is the fraction of muons that arrive at the detector with respect to the number of muons at the surface

$$T(\alpha, \phi) = \frac{N^{detc.}(\alpha, \phi)}{N^{free \, sky}(\alpha, \phi)}$$

T^{measured} is obtained positioning the detector at the surface (free sky sample) and then underground

From the muon flux model, the energy loss formula and the thickness of rock crossed computed by the DEM we can evaluated the expected (*theoretical*) transmission T^{expected}

The relative transmission R is obtained dividing the measured transmission by the expected transmission

$$R(\alpha, \phi) = \frac{T^{measured}}{T^{expected}} \qquad \begin{array}{l} R \cong 1 & \text{without cavities} \\ R \ge 1 & \text{with cavities} \end{array}$$

Some preliminary results at Mt Echia

Comparing the two technologies

Expected results

Giulio Saracino Muon4Future