Future $\mu \rightarrow e\gamma$ Experiments

Cecilia Voena

Dipartimento di Fisica Sapienza Università di Roma on behalf of the

Study Group for Future $\mu \rightarrow e\gamma$ Search Experiment

Muon4Future Venice, 29-31 May 2023

Introduction

- MEG experiment at PSI: best world limit on μ→eγ (I_μ = 3x10⁷ μ⁺/s)
- MEG II is taking data ($I_{\mu} = 5 \times 10^7 \ \mu^+/s$)
- Future facilities (HiMB, AMF,J-Park) will provide up to $10^9 10^{10} \mu^+/s$
- It's time to design a new $\mu \rightarrow e\gamma$ experiment to exploit this opportunity:
 - new detector concept is required
 - R&D already on going
 - possibility of synergies with other experimental activities

Eur.Phys.J.C76 (2016)

MEG II sensitivity (provisional)

Beam Requirements

- As for other searches of rare muon decays ($\mu \rightarrow eee$) the beam must be
 - intense
 - positive muons (avoid capture)
 - continous time structure (minimize accidental background)
 - low momentum (about 30 MeV/c)
- Low momentum is critical to have a small straggling of the total range => thin target => minimization of interactions of decay products
- Possibility to have only a fraction of the beam stopped in the target
 - requires vacuum to reduce background

MEG II target:

- 174 μ m average thickness
- scintillating material

We have the possibility to design the new $\mu \rightarrow e\gamma$ detector in close contact with the development of the new beams to optimize the experiment

Current Experimental Principle (MEG II)

liquid xenon calorimeter $Observables: E_{e+}, E_{\gamma}, \theta_{e\gamma}, \phi_{e\gamma}, t_{e\gamma}$ $E_{\gamma}=52.8 \text{ MeV}$ $f_{\varphi}=0$ $E_{e}=52.8 \text{ MeV}$ $f_{e\gamma}=0$ $F_{e\gamma}=0$ $F_{e}=52.8 \text{ MeV}$ $f_{e\gamma}=0$ $F_{e}=52.8 \text{ MeV}$ $f_{e\gamma}=0$ $F_{e}=52.8 \text{ MeV}$ $f_{e\gamma}=0$

 The core of the design is the kinematic of the 2-body decay (muon decays at rest) to suppress dominant accidental background

radiative decay counter

fast scintillating TC

Next Generation of $\mu \rightarrow e\gamma$ Searches

Beam Rate

Toward a New Concept of a $\mu \rightarrow e\gamma$ Detector

detector performances must improve If beam rate increases accordingly Detector performances: resolutions, efficiency Two requirements Rate capability gaseous: magnetic - drift chamber + faster time detector Positron spectrometers - TPC needed in both cases with tracking silicon detectors calorimeter **Photon** şr photon conversion spectrometer

Study Group for Future $\mu \rightarrow e\gamma$ Search Experiment

- Informal group set up to follow up the discussion in HiMB Physics Case Workshop (April 2021, PSI)
- ~30 people mainly from MEG and Mu3e
- Aim: discuss and create synergies about R&D, create common tools
- Some ideas already under R&D

Photon

Conversion spectrometer

scintillator+gaseous tracker (W. Ootani, F. Renga)

silicon
(A. Schöning)

Calorimeter (A. Papa)

Positron

- gaseous detector (F. Renga)
- silicon (A. Schöning)

Next Generation of $\mu \rightarrow e\gamma$ Searches: Positron Reconstruction

- Low (~50 MeV/c) positron momentum: very light trackers have to be used
- Large volumes gaseous detectors:
 - best compromise of single hit resolution and material budget
 - poor granularity and significant ageing at high beam rate
- Options for future $\mu \rightarrow e\gamma$ experiments:

à la Mu3e

Improve rate capabilities of gaseous detectors

- transverse drift chambers
- radial TPC
- transverse drift tubes à la Mu2e
- new wire materials
- hydrocarbon-free gas mixture

Silicon trackers are becoming competitive

- next generation HV-MAPS thinned down to $25\mu m$
- optimization of geometry and magnetic field

Positron Tracker: Drift Chambers

- Main issue: rate capability
- The rate per wire can be reduced with an alternative arrangement of the wires

Transverse wires (xy plane)

- shorter => lower rate per wire
- support material for wires to be kept low
- no electronic in the tracking volume (long trasmission lines for HV and signals)

Positron Tracker: Radial TPC

- Unconventional geometry can mitigate the issue related to long drifts (diffusion, space charge)
- Cylindrical MPGD readout
 - 2 m long, 30 cm radius (10 cm radial extension)
 - light mixture with low diffusion
 - correction of field deformation is needed

Feasibility studies on going

F. Renga

Positron Tracker: Silicon

- Detector à la Mu3e (silicon HV-MAPS) ٠
 - high rate capability
 - expected improvement: 25 μ m thickness

Limitations •

- vertexing: finite sensor thickness determines positron angular resolution
- momentum resolution is limited by multiple scattering in the Helium environment
- In strong magnetic fields a momentum resolution of <80 keV/c can be reached

A. Schöning

MuPix (HV-MAPS)

Monolithic pixel sensor in 180 nm HV-CMOS

- Example (p_=53 MeV/c):
- 50 µm Si $\rightarrow \sigma(\Theta_{a}) = 6.0 \text{ mrad}$ • 30 um Si $\rightarrow \sigma(\Theta_e) = 4.6 \text{ mrad}$
- - B = 2.6 Tesla

Next Generation of $\mu \rightarrow e\gamma$ Searches: Photon Reconstruction

• To reconstruct the photon two possible approaches:

Calorimetric

- high efficiency, good resolution
- moderate rate capability
- requirements:
 - * high light yield
 - * fast response

Photon conversion spectrometer

- low efficiency (%), extreme resolution
- photon direction ($e\gamma$ vertex)
- energy loss in the converter is an issue

Calo

Sensitivity on $\mu \rightarrow e\gamma$ trend vs beam intensity

blue = photon conversion design black = calorimeter design red = calorimeter design with x2 resolution

Photon Reconstruction - Calorimeter

- MEG (MEG II) LXe calorimeter
 - limited acceptance (10%) due to costs and complexity
 - presently cannot push resolution much better than 1 MeV
 - pile-up issue at increased beam intensity
- Innovative crystals look promising (cost can be an issue)
- E.g. brillance: LaBr3(Ce): G. Cavoto et al., Eur.Phys.J.C 78 (2018)
 - 800 keV resolution within reach
 - time and position resolution looks adequate (30 ps possible)
- MC studies & prototyping on going

Scintillator	Density p [g/cm ³]	Light Yield LY [ph/keV]	Decay time τ [ns]	F.o.M. √ (ρ x LY / τ)
LaBr3(:Ce)	5.08	63	16	4.55
LYSO	7.1	27	41	2.17
YAP	5.35	22	26	2.13
LXe	2.89	40	45	1.61
Nal(TI)	3.67	38	250	0.75
BGO	7.13	9	300	0.46

F.o.M. = $\sqrt{\left(\frac{\rho \cdot LY}{\tau}\right)}$

Photon Reconstruction - Calorimeter

A. Papa

- LYSO or LaBr3(Ce) big crystals with front and back readout (MPPC/SiPM)
- MC simulations based on GEANT4 (including photosensors and electronic) look very promising
- First large prototype under construction (D=7cm and L=16 cm) (LYSO crystals and photo-sensors delivered at PSI)

Photon Conversion with Active Converter

Tracking layer

 necessity to stack multiple conversion layers

- drift chamber (difficult to fit this design)

- radial TPC
- silicon detector

Active conversion layer

- scintillator + photo-detector
- silicon detector

Timing layer

- multi gap TPC (mRPC)
- use active layer to measure time = no timing layer

Scintillator Active Converter

Scintillator:

- light yield
- fast decay time
- high X0,
- low cost, high critical energy

Photon detector:

W. Ootani

- high light detection efficiency
- low mass

- Simulation studies and tests beams are on going
- Preliminary results with four layers of 3-mm thick LYSO crystals: 10% efficiency
- Expected energy resolution: 140 keV (p.e. statistics)
- Optimization to mitigate pile-up in progress

(N.B. Effect of pileup hit of returning conversion pair is not taken into account) ¹⁷

Silicon Active Converter and Tracking Layer

Example:

- 1 pixel layer as converter (critical energy in Si is 35 MeV)
- 2 pixel layers for tracking

- Measure energy loss and conversion point in Si
- Could also be used for precise timing → <100ps?
- Caveat: only small radiation length possible
 - \rightarrow to be simulated

Gaseous Pair Tracking Layer

• Low rate: less demanding vs positron tracker

F. Renga

• Studies on going with a radial TPC with strip readout

.....

Target resolution: 40 ps for MIP (=> 30 ps for conversion pair)

W. Ootani

- Active converter (e.g. LYSO) can measure timing
- Beam test @KEK PF-AR beam line, Nov. 2022
 - Standard LYSO, Fast LYSO (FTRL) 3 \times 5 \times 50 mm³ wrapped with ESR
 - SiPM: S14160-3015PS (3 × 3 mm², 15 μ m), S14160-3050HS (3 × 3 mm², 50 μ m)

Timing Layer

- Waveform digitizer: DRS4 (1.6 GSPS)

Good timing resolution of 40 - 50 ps for fast LYSO

- Other option: mRPC
- DLC-RPC technology developed for MEG II US-RDC
- single p.e. time resolution of 110 ps achieved for single layer RPC
- Optimisation for timing under study:
 - * thinner gap
 - * higher efficiency and timing resolution with many layers

A Possible Design for a Future $\mu \rightarrow e\gamma$ Experiment

- Photon spectrometer with active converter
- Positron spectrometer based on Si detector (à la Mu3e)
- Separate active targets => further backgrounds suppression
- Significantly improved acceptance vs MEG II => possible angular distribution measurement in case of discovery

Expected Sensitivity (3 Years Data Taking)

A few 10^{-15} level seems to be within reach for 3 years running at $10^9 \mu/s$ (further improvements possible with R&D)

Conclusion

- Future facilities will make available intense muon beams
- A window of opportunity for **new** $\mu \rightarrow e\gamma$ experiments is opening
- New experimental concept is needed to do deal with high rate and accidental background
 - we have the possibility to optimize the experiment together with the future beams
- A study group has been constituted

- Synergy with $\mu \rightarrow eee$ search possible
 - Mu3e experience with HV-MAPS can be exploited
 - both searches can take advantage of improvements in this technology (thickness, timing)
 - can a single future experiment perform both searches ?
- 10⁻¹⁵ sensitivity seems within reach

Backup

Random ideas for futuristic $\mu \rightarrow e \gamma$ searches

- Active targetry
 - μ/e separation
 - very thin
- Target + detector in vacuum
 - containing the Bragg peak would not be needed anymore (-> thinner target and compensate with more intensity)
 - multiple target option
 - could next-generation straw tubes be a good option for tracking also in μ -> e γ? Too much supporting material? What about silicon detectors (cooling)?

- What about spreading muon stops over a very large surface?
- Stored vs. stopped muons?
- μ -> e γ + μ -> 3e
 - possible in a detector with 2π acceptance in φ
 - give up the low-energy cut of the MEG spectrometer —> higher rate tolerance needed, should be not a problem in a Mu3e-like design

A. Schöning, Heidelberg

23

HiMB Workshop, 7.April 2021

F. Renga

Radial Time Projection Chamber

Feasibility Study

- Simulation at 10⁹ µ/s
- · One should consider ~ 250k readout channels
 - challenging **FE integration** and **cooling** in the outer surface of the cylinder with a reasonable material budget (~ few % X₀)

Gaseous Pair Tracking Layer

Low rate: less demanding vs positron tracker

F. Renga

• Studies on going with a radial TPC with strip readout

Active Target

• Expected photoelectron statistics for LYSO + SiPM

- Mean energy deposit for MIP (3mm-thick LYSO): 3.36MeV \rightarrow 6.72MeV for conversion immediately after incidence
- Light yield: 4×10^4 photons/MeV
- •2200 p.e. measured with $30 \times 30 \times 4 \text{ mm}^3$ and 2×SiPM (S13360-2050VE, $2 \times 2 \text{ mm}^2$, $50 \mu \text{m}$)

 $\Rightarrow \sigma_E \sim 140 \, \mathrm{keV}$ (p.e. statistics)

• Photoelectron statistics should be enough

Gas PM

as Photo-detector

• Gas PM (a.k.a. Gaseous PMT)

- Photocathode + electron multiplier in gas chamber
- \bullet Pioneering work by F. Tokanai et. al \rightarrow MPGD as electron multiplier

• Our idea: gas PM with RPC as electron multiplier

- Ultra-low mass RPC with DLC developed for MEG II radiative decay counter (RDC)
- In collaboration with Prof. K. Matsuoka who is developing gas PM with RPC
- Need large area photocathode sensitive to scintillation light
 - Quite challenging (stability, cost,...)

Prototype of Gas PM with RPC (Prof. K. Matsuoka)

- Photocathode: LaB₆
 - Still low QE
 - Work function 2.6eV
- Intrinsic resolution: 31ps

Gas PM with MPGD (Prof. F. Tokanai)

