### Lepton flavour violation and axion-like particles





Based on work with M. Bauer, M. Neubert, M. Schnubel and A. Thamm 1908.00008, 2110.10698

Muon4Future, Venice 2023

**UK Research** and Innovation



## Why axion like particles (ALPs)?

**MODEL-BUILDING MOTIVATIONS:** 

Any dynamics with a spontaneously broken approximate global symmetry will produce light spinless particles



| $m_{\pi}$ |  | au |
|-----------|--|----|
|           |  |    |
|           |  |    |

Pions are pseudo goldstone bosons of an approximate spontaneously broken symmetry

Many motivated explicit models: e.g. QCD axion, dark sector models, flavon models, composite Higgs models, ....











# ALP effective Lagrangian



Then the parameter space of the model depends on  $m_a, f, \mathbf{c}_F, c_{XX}$ 

### Don't need to know the details of the UV physics to study ALP phenomenology

Here particle content is SM+ALP

Theory is an EFT, with ALP-SM couplings beginning at dimension 5

$$F = Q, u, d, L, e$$

$$ar{\psi}_F oldsymbol{c}_F \gamma_\mu \psi_F$$

$$W^A_{\mu\nu}\tilde{W}^{\mu\nu,A} + c_{BB}\frac{\alpha_1}{4\pi}\frac{a}{f}B_{\mu\nu}\tilde{B}^{\mu\nu}$$

$$\Lambda_{UV} = 4\pi f$$

hermitian matrices in flavour space



## Lepton flavour violating ALPs

$$F = Q, u, d, L, e$$

$$F =$$

Zoor

$$F = Q, u, d, L, e$$
Bjokeroth, Chun, King, 1806.00660  
Bauer, Neuber, SR, Schnubel, Thoma  
Correlia, Paradisi, Sumensari, 1911.0  

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{f} \sum_{F} \bar{\psi}_{F} c_{F} \gamma_{\mu} \psi_{F}$$

$$+ c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_{2}}{4\pi} \frac{a}{f} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + c_{BB} \frac{\alpha_{1}}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu}$$
ming in on the fermionic couplings...
$$\mathcal{L}_{\text{eff}}^{\text{LFV}} = \frac{\partial^{\mu} a}{f} \left( \bar{\ell}_{i}(k_{E})_{ij} \gamma_{\mu} P_{L} \ell_{j} + \bar{\ell}_{i}(k_{e})_{ij} \gamma_{\mu} P_{R} \ell_{j} \right)$$

$$\frac{a}{\sqrt{5} \ell_{j}} \frac{\bar{\ell}_{i}}{\ell_{j}}$$

$$\frac{a}{\sqrt{5} \ell_{j}} \frac{\bar{\ell}_{i}}{\ell_{j}}$$

LFV ALPs can naturally arise as PNGBs of symmetries addressing

- the strong CP problem (DFSZ axion) Calibbi, Redigolo, Ziegler, Zupan, 2006.04795
- the flavour problem (familon) Linster, Ziegler 1805.07341, Calibbi, Redigolo, Ziegler, Zupan 2006.04795
- neutrino masses (majoron) Chikashige, Mohapatra, Peccei 1981, Schechter & Valle 1982, Garcia-Cely & Heeck 1701.07209, Heeck & Patel 1909.02029

### if i = j, only pseudoscalar coupling

### , 1908.00008 )6279



## Light vs heavy BSM particles and LFV



### For LFV generated by heavy particles, expect certain patterns of effects



See A. Teixeira's talk

### Each operator generates the other

Calibbi & Signorelli, 1709.00294 Davidson, 2010.00317



## Light vs heavy BSM particles and LFV

### For LFV generated by heavy particles, expect certain patterns of effects





See A. Teixeira's talk

### Each operator $\ell_i$ generates the other

Calibbi & Signorelli, 1709.00294

(Same argument for  $\tau \rightarrow 3\mu$  and  $\tau \rightarrow \mu\gamma$ , etc)









Electroweak production of ALPs at muon collider: Han, Li, Wang 2203.05484, Bao, Fan, Li 2203.04328 Production of ALPs at muon collider via  $au o \mu a$  decay: Haghighat, Najafabadi 2106.00505

### For light new physics ( $m < \sqrt{s}$ ), the picture changes, need to think about direct production



# Muon decays to ALPs



In many models, the ALP will contribute to all of these

- If LFV ALPs are light enough, can be produced on-shell in muon decays
  - Signatures depend strongly on ALP decay length and branching ratios

Signature:  $\mu \rightarrow e + \text{invisible}$  $\mu \to e\gamma\gamma \\ (\mu \to e\gamma)$ 

 $\mu \rightarrow 3e$ 



## Effect of flavour conserving couplings



$$\mathcal{L}_{\text{eff}}^{\text{LFV}} = \frac{\partial^{\mu} a}{f} \left( \bar{\ell}_i (k_E)_{ij} \gamma_{\mu} P_L \ell_j + \bar{\ell}_i (k_e)_{ij} \gamma_{\mu} P_R \ell_j \right)$$
$$c_{ij} \equiv \sqrt{|(k_e)_{ij}|^2 + |(k_E)_{ij}|^2} \quad i \neq j$$

### Simple scenario with only leptonic couplings at tree level

Bauer, Neubert, SR, Schnubel, Thamm, 2110.10698







# Mass dependence

For ALP masses too heavy to be  $\mu \rightarrow 3e$  can still be constraining

be consistent with other bounds:







An ALP with  $\mu - e$  couplings will give contributions to (g - 2) of electron and muon:



But it will also contribute to muonium-antimuonium oscillations:



MACS collaboration, PRL 82 (1999) 49-52

### $(g-2)_{\ell}$ from $\mu - e$ lepton flavour violation

See P. Paradisi's talk

11



 $\mathbf{U}$ 

An ALP with (only) couplings involving  $\tau$ s can nevertheless impact  $\mu$  observables at loop level





# Lepton flavour violation with $\tau$ s











## Summary

Interplays and complementarity with flavour conserving observables and LFV in aus





Backup

### Lepton flavour violating ALPs

Bjorkeroth, Chun, King, 1806.00660 Bauer, Neubert, SR, Schnubel, Thamm, 1908.00008 Cornella, Paradisi, Sumensari, 1911.06279

Cornella, Paradisi, Sumensari, 1911.06279  

$$\frac{\partial a}{f} \sum_{i} \bar{\ell}_{i}(k_{E})_{ij} \gamma_{\mu} P_{L} \ell_{j} + \bar{\ell}_{i}(k_{e})_{ij} \gamma_{\mu} P_{R} \ell_{j} = \frac{a}{f} \sum_{i} \bar{\ell}_{i} \left[ (k_{e})_{ij} - (k_{E})_{ij} \right] (m_{i} + m_{j}) \gamma_{5} \ell_{j} + \bar{\ell}_{i} \left[ (k_{e})_{ij} + (k_{E})_{ij} \right] (m_{i} - m_{j}) \ell_{j}$$
scalar coupling

### Flavour conserving



Flavour violating

$$c_{\mu e} = \sqrt{|(k_e)_{\mu e}|^2 + |(k_E)_{\mu e}|^2}$$

$$a \qquad e$$

## $(g-2)_{\ell}$ from lepton flavour violation

Bauer, Neubert, SR, Schnubel, Thamm, PRL 124 (2020) 21





### Lagrangian

$$\bar{\ell}_i(k_E)_{ij}\gamma_\mu P_L\ell_j + \bar{\ell}_i(k_e)_{ij}\gamma_\mu P_R\ell_j \Big)$$

### New contribution to (g-2), dependent on mass of lepton in loop

lighter lepton in loop  $m_{\ell_i} < m_{\ell_i}$ 

$$\frac{m_{\ell_i}^2}{5\pi^2 f^2} \left( |(k_e)_{ij}|^2 + |(k_E)_{ij}|^2 \right) \left( x_i^2 \ln \frac{x_i}{x_i - 1} - x_i - \frac{1}{2} \right)$$

Always positive if  $m_a > m_i$ 

heavier lepton in loop  $m_{\ell_i} > m_{\ell_i}$ 

$$\frac{2}{\pi^2 f^2} \operatorname{Re}\left[(k_e)_{ij}^* (k_E)_{ij}\right] \left(x_j^2 \ln \frac{x_j}{(x_j - 1)^3} - \frac{3x_j - 1}{2(x_j - 1)^2}\right)$$

Can be *positive or negative* depending on sign of couplings







### **Combined explanations with LFV?**

Bauer, Neubert, SR, Schnubel, Thamm, PRL 124 (2020) 21

