Charged Lepton Flavour Violation: Experimental Activities

Yuki Fujii Monash University Muon4Future workshop 30th May 2023, Venice

Starting from past and present

- Muon CLFV searches have quite successful history despite the lack of discovery
 - Highly precise theoretical prediction;
 YES or NO
 - Remarkable progress in muon intensity
 - ► From cosmic-rays to Multi MW beams
 - So many improvements in detector technologies
 - High precision tracking, energy calorimetry, *etc*

Muon Charged Lepton Flavour Violation (CLFV)

► No CLFV processes in the Standard Model

Massive neutrinos induce CLFV processes via neutrino oscillations

► <u>Already new physics beyond the Standard Model</u> but as tiny as almost undetectable Clear sign of the new physics if discovered

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U^{\dagger}_{\mu i} U_{ei} \frac{m_{\nu_i}^2}{m_W^2} \right|^2 \approx 10$$
$$\approx CR(\mu^- N \to e^- N)$$

CLFV in EFT

- Searches for CLFV processes indirectly probing Λ_{NP} >
 1 PeV new physics scale
 - ⇔ Ultra large Moon collider, *14 PeV pp* (arXiv:2106.02048)
- ► <u>Complementary searches available</u> with different muon CLFV modes (Muon CLFV golden modes; $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow eN$)

	Current upper limit (90%CL)	Given by	Target 90%CL UL sensitivity	Current Projects
μ→eγ	4.7×10-13	MEG (2016)	6×10 -14	MEG II
µ→eee	1.0×10-12	SINDRUM (1988)	2×10-15/10-16	Mu3e/Mu3e p-II
µN→eN	7.0×10 ⁻¹³ @Au	SINDRUM II (2006)	10-14/10-17	DeeMe/COMET/Mu2

- Simple kinematics

Yuki Fujii, Muon4Future, Venice, Italy, 2023

► Accidental background dominant → DC beam, high precision measurements

Muon Sources

2023/2/2 YUSUKE UCHIYAMA

- High power proton accelerators produce high intensity muons
- \blacktriangleright Currently DC 10⁸ μ /sec available @PSI \rightarrow J-PARC/FNAL will soon deliver the pulsed muons

MEG Experiment

> Physics run completed in 2008—2013 using the world's best DC μ beam @PSI π E5

Liquid xenon γ-ray detector

Large liquid xenon gamma calorimeter

Scintillation timing counter bars Yuki Fujii, Muon4Future, Venice, Italy, 2023

\blacktriangleright Two orders better sensitivity than the previous limit \Leftrightarrow **Better resolutions**, more muons, larger photon acceptance

MEG Experiment

Yuki Fujii, Muon4Future, Venice, Italy, 2023

- ► Final results published in 2016 using the full dataset
- ► Final results; $BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ (90% C.L.), Euro. Phys. J C (2016) 76:434
- Start getting the BG events in the signal region → time for the upgrade

MEG II Experiment

Special thanks to Marco Chiappini

MEG II Experiment

Yuki Fujii, Muon4Future, Venice, Italy, 2023

11

Yuki Fujii, Muon4Future, Venice, Italy, 2023

Combinatorial background

Timing resolution < 100 ps

-VIS

Vertex resolution < 0.5 mm

 $|\Sigma p|$ and ΣE as precise as 1 MeV

Yuki Fujii, Muon4Future, Venice, Italy, 2023

Special thanks to Cristina Martin Perez

Yuki Fujii, Muon4Future, Venice, Italy, 2023

Yuki Fujii, Muon4Future, Venice, Italy, 2023

The COMET Experiment

Yuki Fujii, Muon4Future, Venice, Italy, 2023

Production Target + High Efficiency Pion Capture Solenoid ~5T,

18

Yuki Fujii, Muon4Future, Venice, Italy, 2023

- Quick realisation to achieve ×100 better sensitivity

 - Using a set of Cylindrical Detectors (CyDet), to
 - Direct beam profile measurement using StrECAL

COMET Phase-I technical design report, PTEP, Vol 2020, Issue 3, March 2020, 033C01,

StrECAL for beam measurement

CyDet for Phase-I physics

COMET Phase-I CyDet

Performance @	D 105
Energy Resolution	3.
Position Resolution	7.7
Time Resolution	0.53

COMET Phase-I

$$\mathscr{B}(\mu^- N \to e^- N)|_{Al} = \frac{1}{N_{\mu} \cdot f_{cap} \cdot f_{gnd} \cdot A_{\mu-e}} = 3.0$$

N_{μ} : #of stopped μ^{-} , 1.5×10^{16} , exp. @ 150 days, f_{cap} : fraction of stopped μ^{-} captured, 0.61 , theory, f_{gnd} : fraction of μ^{-} bound to ground state, 0.9 theory, A_{μ} : acceptance of μ -e signal, 0.041, exp			Туре	Background	Estimated e
			Physics	Muons decay in orbit	0.01
				Radiative muon campture	0.0019
ltem	Value	Comment		Neutron emission after muon capture	< 0.001
Acceptance	0.2	Fixed		Charged particles after µ capture	< 0.001
Trigger/DAQ efficiency	0.8	Subject to change	Prompt beam	Beam e^+/e^- , μ/π decay-in-flight, others	Total < 0.0
Track finding efficiency	0.99	SC		Radiative pion capture	0.0028
Track selection	0.9	SC	Delayed beam	from delayed proton beam	Negligib
Momentum window	0.93	103.6 MeV/c < p < 106.0 MeV/c		Antiproton induced background	0.0012
Timing window	0.3	700 < t < 1170 ns, SC	Others	Cosmic rays (computationally limited)	< 0.01
Total A _µ	0.04	At least 25% error	Total BG		< 0.03

Yuki Fujii, Muon4Future, Venice, Italy, 2023

× 10⁻¹⁵ Physics data taking will start in 2024/2025

COMET Phase-II

- ► New straw tube to reduce the multiple scattering + less pileup hits
 - \blacktriangleright Reduce the wall thickness from 25 μ m to 12 μ m and the diameter from 10 mm to 5 mm
 - The prototype tubes have already been produced and being tested

(previous estimation was $\sim 3 \times 10^{-17}$)

Yuki Fujii, Muon4Future, Venice, Italy, 2023

2-3 years after the Phase-I

K. Oishi, PhD thesis in 2020

COMET Phase-a

Proton beam profile monitor

► After C-line completion at J-PARC, muon beam commissioning was performed with a small graphite target & lower beam power

► The 1st muon beam delivered to the COMET experimental area

Special thanks to Pavel Murat

Special thanks to Pavel Murat

PS cold mass – inner shield dry run insertion

Yuki Fujii, Muon4Future, Venice, Italy, 2023

- ► PS under construction
- ► DS final coil winding as of two weeks ago
- ► Both TS are ready for the installation

26

Special thanks to Pavel Murat

Transverse coordinate resolution Hit efficiency Mu2e preliminary 0.9 4500E $\epsilon = 0.967 \pm 0.001$ 0.8 4000E 0.7 3500E 0.6 3000E σ =132.7±0.7 µm 0.5 2500E 0.4 2000E 0.3 1500E 0.2 Mu2e preliminary 1000E 0.1 500F 2.5 3 3.5 4 DOCA to straw center (mm) 0-0.4 1 1.2 1.4 Drift radius residual (mm) 0.8 0.2 0.4 0.6 -0.2 0 VST straw efficiency و 0.45 DATA: Orthogonal Beam σ/Ε_{dep} [%] DATA: Beam @ 50 ° MC: Orthogonal Beam MC: Beam @ 50 ° 0.4 0.35 0.3 0.25 0.2 3.11/3 χ^2 / ndf / ndf 0.15 Prob 0.37 Prob **D.63** 0.70 ± 0.00 0.70 ± 0.00 а 0.1E 0.26 ± 0.03 3.95 ± 0.28 2**⊨** b b 0.37 ± 0.05 а 0.05 С 5.79 ± 0.40 С 0 30 10 20

0.1 0.11 E_{dep} [GeV]

0.09

0.08

Yuki Fujii, Muon4Future, Venice, Italy, 2023

0.06

0.05

0.07

Special thanks to Pavel Murat

MDPI Universe 2023, 9(1), 54; https://doi.org/10.3390/universe9010054

-	Channel
-	Cosmic rays
	DIO
	Antiprotons
	RPC in-time
	RPC out-of-time ($\zeta = 10^{-1}$
	RMC
	Decays in flight
	Beam electrons
-	Total
-	SES

- > Upper limit sensitivity is 6.2×10^{-16} @90% C.L. and 5 σ discovery potential with $N_{sig}=5$
- > An order improvement expected in Run-2, See more details in G. Pezzullo's talk

Yuki Fujii, Muon4Future, Venice, Italy, 2023

> Mu2e Run-1 (2025) expected sensitivity assuming 6×10^{16} stopped muons on the proton target

28

► No detailed information from SINDRUM-II collaboration

► Details described in <u>arXiv:2009.00214</u> (M. MacKenzie and P. Murat)

> COMET/Mu2e will be able to investigate this with much better sensitivity

Summary

- > The CLFV processes are powerful probes to search for the new physics beyond the standard model
 - ► Already got into the high energy region above 1 TeV indirectly
 - ► There are more muons to further investigate the BSM with CLFV processes @ PSI, J-PARC and Fermilab
 - ► Many ongoing activities in CLFV searches and results coming up in the next few years from MEG 2, Mu3e, DeeMe, COMET and Mu2e. *Stay tuned!*
- ► More details can be found in <u>New Frontiers in Lepton Flavor</u> in Pisa, May 2023
- > My perspectives; Muons are there thanks for the accelerator ppl's efforts, more challenges are foreseen in managing the higher rate environment, the background suppression/understanding are the most important

Thank you! / Grazie!

$$\mu^+ \rightarrow e^+ \gamma$$

p.s. abstract submission for Mar Fact2023 is due on 3rd of June https://indico.cern.ch/event/1216905/

30

BACKUP SLIDES

COMET Experiment @J-PARC

COMET Phase-I ~**Proton beam**~

Yuki Fujii, Muon4Future, Venice, Italy, 2023

COMET Phase-I ~**Muon beam**~

Yuki Fujii, Muon4Future, Venice, Italy, 2023

8GeV protons hit the Graphite target and produce secondary pions (Energy chosen to

Low momentum π -likely back scatter and direct to the muon transportation solenoid (TS)

3) A curved TS with a dipole field to select low momentum negative particles

Radial gradient in Circular motion magnetic field about a drifting Cylindrical field lines centre: $D \propto \frac{p}{qP} f(\theta)$

COMET Phase-I ~**CyDet**~

► CDC

► Signal electrons' trajectories fully contained inside the volume

► CTH

- > ~5,000 wires, 20 stereo layers for momentum measurement, He:iC₅H₁₀=90:10, typical drift time < 400ns
- > 2 layers of 64 segmented plastic scintillator rings at both ends of CDC for the timing measurement ► Suppress accidental events and low momentum particles by taking four-fold comciden¢€5-MeV e
 - background

COMET Phase-I ~CDC~

- > All stereo-angle wire cylindrical drift chamber to measure the momentum of incoming charged particle
- almost ready for the installation

Yuki Fujii, Muon4Future, Venice, Italy, 2023

\blacktriangleright Following the wiring completion in 2016, the full channels readout tested in 2019 \rightarrow

COMET Phase-I ~CTH~

- ► Four fold coincidence for better timing determination & less accidental events \Leftrightarrow the rate of e+/e- <10MeV is as high as 1-10 MHz
 - ► After 4-fold coincidence, the rate become less than 100 kHz (based on simulation studies)
 - Photon extraction with fibre bundles to use inexpensive commercial SiPMs

Yuki Fujii, Muon4Future, Venice, Italy, 2023

CTH counter + fibre prototype constructed and tested @Monash

Fibre bundle prototype

MPPC cooling system to achieve $\sim -40^{\circ}C$

CTH Counter supporting structure

COMET Phase-I ~**CyDet trigger**~

Y. Nakazawa's PhD thesis

- Further trigger rate suppression by using the CDC hit information @FPGA level to achieve the trigger rate less than 13 kHz with the maximum signal efficiency
 - Many BG hits deposit larger energy than signal ones without helix pattern contained inside the CDC
 - ► GBDT for hit classification to reduce the BG-like hits
 - Neural network based event classification trigger is being developed for further BG trigger suppression

ROC curve for hits efficienc) **5** 0.8 -9.0 Je 2-bit data backgr 5'0 1-bit data raw data 0.6 0.8 1 signal hit retention efficiency 0.2 0.4

Using mock data and real FPGA boards, 120 ns latency achieved without losing too many signals

Y. Fujii, M. Miyataki et.al. <u>NuFact 2023</u>

COMET Phase-I ~ **StrECAL**~

Direct beam measurement with Phase-II prototype detectors

Yuki Fujii, Muon4Future, Venice, Italy, 2023

LYSO crystals - Full energy absorption - Fast time response APD readout (space & radiation tolerance)

5 or more Straw stations

ECAL

- Each station consists of 2 horizontal and 2 vertical layers
- Vacuum tight ultra thin straw tubes

COMET Phase-I ~ **Straw Tracker**~

- ► The 1st full channel straw station constructed for COMET Phase-a/Phase-I beam measurements

 - ► Expected $\sigma_p \sim 180 \text{ keV/c}$
- aiming sensitivity in Phase-II

Yuki Fujii, Muon4Future, Venice, Italy, 2023

 \blacktriangleright Made of Aluminised mylar 20 μ mT, 10mm ϕ tolerate the 1 atm pressure difference, filled with Ar:Ethane 50:50

> Besides, 12 μ mT, 5mm ϕ straws have been developed and being tested, $\sigma_p \sim 150 \text{ keV/c}$ essential to achieve the

4U

COMET Phase-I ~ Electron Calorimeter~

- Measure the electron arrival time with good energy resolution
- > Energy resolution better than 5% @100 MeV e_{τ} , $\sigma_t \sim 0.5$ ns, $\sigma_{X/Y} \sim 6$ mm, all validated in the test beam measurement
- \blacktriangleright LYSO 64 \times 16 modules to be installed in the Phase-I
 - > In Phase-II it'll be scaled up to 5,000 for ~ 1.5 m ϕ coverage with smaller gaps

DeeMe @J-PARC MLF

beam profile

Yuki Fujii, Muon4Future, Venice, Italy, 2023

 V_{μ} **e**-

42

COMET Phase-I ~ **Expected Sensitivity**~

 $\mathscr{B}(\mu^- N \to e^- N)|_{Al} = \frac{1}{N_u \cdot f_{cap} \cdot f_{pnd} \cdot A_{u-e}} = 3.0 \times 10^{-15}$

ltem	Value	Comment
Acceptance	0.2	Fixed
Trigger/DAQ efficiency	0.8	Subject to change
Track finding efficiency	0.99	SC
Track selection	0.9	SC
Momentum window	0.93	103.6 MeV/c < p < 106.0 MeV/c
Timing window	0.3	700 < t < 1170 ns, SC
Total	0.04	At least 25% error

Yuki Fujii, Muon4Future, Venice, Italy, 2023

 N_{μ} : #of stopped μ^{-} , 1.5×10¹⁶, exp. @ 150 days, \mathbf{f}_{cap} : fraction of stopped μ^{-} captured, 0.61, theory, \mathbf{f}_{gnd} : fraction of μ^{-} bound to ground state, 0.9 theory, A_{μ} : acceptance of μ -e signal, 0.041, exp...

COMET Phase-I ~**Background**~

Туре	Background	Estimated events	
Physics	Muons decay in orbit	0.01	
	Radiative muon campture	0.0019	
	Neutron emission after muon capture	< 0.001	
	Charged particle emission after muon capture	< 0.001	
Prompt beam	Beam electrons, μ/π decay-in-flight, others	Total < 0.0038	
	Radiative pion capture	0.0028	
Delayed beam	1 from delayed proton beam	Negligible	
	Antiproton induced background	0.0012	
Others	Cosmic rays (computationally limited)	< 0.01	
Total		< 0.032	
	COMET Phase-I is almost BG free, sensitivity is only limited by the cost of radiation shielding and detector's rate capabilities!		

Yuki Fujii, Muon4Future, Venice, Italy, 2023

44

COMET Phase-II ~Concept~

Yuki Fujii, Muon4Future, Venice, Italy, 2023

×100 Sensitivity means ×100 background particles

- DIO background suppression is essential
 - Better momentum resolution = less materials
 - ► Higher pile-up situation

Smaller diameter straw-tubes with thinner wall

Additional electron spectrometer to reduce lower momentum DIOs

COMET Phase-II ~**Sensitivity**~

 $\mathscr{B}(\mu^- N \to e^- N)|_{Al} = \frac{1}{N_{\mu} \cdot f_{cap} \cdot f_{gnd} \cdot A_{\mu-e}} = 1.4 \times 10^{-17}$

ltem	Value in P-I	Value in P-II	Comment
Acceptance	0.2	0.18	Fixed
Trigger/DAQ efficiency	0.8	0.87	Subject to change
Track reconstruction efficiency	0.99	0.77	SC
Track selection	0.9	0.94	SC
Momentum window	0.93	0.62	104.2 MeV/c < p < 105.5 MeV/c
Timing window	0.3	0.49	600 < t < 1170 ns, SC
Total	0.04	0.034	At least 25% error
			K. Oishi, <u>PhD thesis in 2020</u>

Yuki Fujii, Muon4Future, Venice, Italy, 2023

 N_{μ} : #of stopped μ^{-} , 3.3×10^{18} , exp. @ 230 days, f_{cap} : fraction of stopped μ^{-} captured, 0.61, theory, f_{gnd} : fraction of μ^{-} bound to ground state, 0.9 theory, A_{μ} : acceptance of μ -e signal, 0.036, exp..

CLFV in EFT

- > Searches for CLFV processes indirectly probing $\Lambda_{NP} > 1 \ PeV$ new physics scale
 - ⇔ Ultra large Moon collider, *14 PeV pp* (arXiv:2106.02048)
- Complementary searches available with different muon CLFV modes (Muon CLFV golden modes; $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow eN$)

	Current upper limit (90%CL)	Given by	Target 90% sensitivi
μ→eγ	4.7×10 -13	MEG	6×10-1
µ→eee	1.0×10 ⁻¹²	SINDRUM	2×10 ⁻¹⁵ /1
µN→eN	7.0×10 ⁻¹³ @Au	SINDRUM II	10-14/10

µ-e conversion in BSM

Yuki Fujii, Muon4Future, Venice, Italy, 2023

Two Higgs doublet

New heavy bosons / anomalous coupling

Different interactions generate different processes \rightarrow complementary searches unveil the BSM structure

S. Davidson and B Echenard, Rare processes and Precision Frontier kick-off meeting (2020)

CLFV and Leptoquarks

► LQ can simultaneously explain both;

- Recent B physics anomalies
- Long standing g-2 anomaly

P.F. Perez, et.al. arXiv:2104.11229 Yuki Fujii, Muon4Future, Venice, Italy, 2023

Left plot; Scalar LQ, $\Phi 4$ satisfies all b Right plot; Allowed region from g-2 results anomalies All 1σ band

 \rightarrow all of them somehow satisfied

