

Charged lepton flavour violation in muons: theory overview

Ana M. Teixeira

Laboratoire de Physique de Clermont - LPC

Muons for the Future Venice, 30 June 2023

Flavour and CP violation: SM

Flavour in the Standard Model: interactions between *fermion* families (and the Higgs)

 Y_{ij}^{u}, Y_{ij}^{d} and $Y_{ij}^{\ell} \sim$ encode flavour dynamics (masses, mixings & CP violation) flavour-universal gauge interactions

Extensive probes of the "CKM paradigm": meson oscillation and decays, CP violation...

Flavour and CP violation: SM

Flavour in the Standard Model: interactions between *fermion* families (and the Higgs)

 Y_{ij}^{u}, Y_{ij}^{d} and $Y_{ij}^{\ell} \sim encode$ flavour dynamics (masses, mixings & CP violation) flavour-universal gauge interactions

SM lepton sector: (strictly) massless neutrinos conservation of total lepton number and lepton flavours lepton flavour universality preserved (only broken by Yukawas) no intrinsic CPV sources - tiny leptonic EDMs (4-loop... $d_e^{\text{CKM}} \leq 10^{-38}e \text{ cm}$)

Extend the SM to accommodate $\nu_{\alpha} \leftrightarrow \nu_{\beta}$: assume most minimal extension $SM_{m_{\nu}}$ [$SM_{m_{\nu}}$ = "ad-hoc" m_{ν} (Dirac), U_{PMNS}]

In SM_{m_u} : flavour-universal lepton couplings, total lepton number conserved (LNC)

cLFV possible... but **not observable!! BR**($\mu \rightarrow e\gamma$) ~ 10^{-54}

lepton EDMs still beyond observation...

CLFV, LNV, EDMs, ...: observation of SM-forbidden leptonic modes and/or tensions with data Discovery of New Physics! (Possibly before direct signal @ LHC!)

Flavour and CP violation: SM

2

Flavour'ed paths: SM and beyond...

Strong arguments in favour of New Physics!

A number of theoretical caveats... and observations unaccounted for in the SM: baryon asymmetry of the Universe, viable dark matter candidate, neutrino oscillations

Neutrino oscillations: 1st laboratory ("flavoured") evidence of NP \Rightarrow massive neutrinos and leptonic mixings $U_{PMNS}^{\alpha i}$ \Rightarrow New (Majorana) fields? New sources of CP violation? $\Delta L \neq 0$ and leptogenesis... (?)

Tensions (?) between SM and observation: rooted in flavours!

 $(g-2)_{\mu}$, $(g-2)_{e}$, anomalies in atomic decays, (meson decays)...

 \Rightarrow in close relation with the lepton sector (and often involving muons!)

Many hints and a clear necessity of New Physics... Which NP model? Realised at which scale $\Lambda_{\rm NP}$?

 \Rightarrow Unique opportunities to search for NP in the lepton sector exploring connections to mechanism of ν mass generation!

Muon flavours to lead the way!

New Physics quests with muon cLFV

Why muon flavours?

"Bound states": Muonium (μ^+e^-) \sim QED (and gravity!) tests; $\mu^{H} \sim$ proton radius Muonic atoms (1s bound state) \sim P violation, cLFV, and more!

See talk by P. Paradísi

Muons - ideal probe for NP: from lepton flavour universality tests, to anomalous magnetic moments, ... to cLFV!

cLFV muon observables

Muons - ideal probe for NP: from lepton flavour universality tests, to anomalous magnetic moments, ... to cLFV!

Muon cLFV - extensive opportunities, numerous observables, at low- and high-energies

```
▶ Leptonic decays: radiative \mu \to e\gamma and three-body \mu \to 3e

muonic atoms \mu^{-}(A, Z) \to e^{-}(A, Z) & LNV \mu^{-}(A, Z) \to e^{+}(A, Z-2)^{*}

nuclear assisted Coulomb decays \mu^{-}e^{-} \to e^{-}e^{-}

Muonium oscillations Mu(\mu^{+}e^{-}) -\overline{Mu}(\mu^{-}e^{+}) and decays Mu(\mu^{+}e^{-}) \to e^{+}e^{-}

Light "invisible" searches (e.g. \mu \to e\phi, ...)

See talk by S. Renner ●

▶ Semi-leptonic decays: \tau \to M\mu, M \to (M')\mu\ell

▶ At colliders: Z \to \mu\tau, H \to \mu\tau (e.g. FCC-ee, CEPC, ...);

high p_{T} dilepton tails in pp \to \mu\ell ...

Numerous channels at a future muon collider!
```

Muons: *lightest "unstables"* - clean objects, ideal & versatile probes for new physics searches At the centre of a world-wide comprehensive programme - experiments *and* theory

See talk by N. Craig

See talk by Y. Fujii

cLFV muon observables

Searching for tiny μ -cLFV effects \Rightarrow high-intensity sources for excellent sensitivities

⇒ Need many many (really many!) muons: excellent sensitivity with current sources, amazing prospects with advent of high-intensity beams (PSI, FNAL, J-PARC) and beyond?... Muon facility? Muon collider?

cLFV muon observables

Searching for tiny μ -cLFV effects \Rightarrow high-intensity sources for excellent sensitivities

Learning about New Physics from muon cLFV

a μ azing sources of information on the NP models we do need!

Muon cLFV: learning about New Physics

Aµazing prospects - so many experimental avenues, so many channels to study!

Near future: first hints of New Physics from μ -cLFV, or tighter constraints ... but on which NP?

In "theory", what are the methods to interpret the data - measurements or new bounds? (What can we learn from all these muons?)

Learning about New Physics from muon cLFV: effective approach (EFT)

A brief survey of recent developments & ideas...

Muon cLFV: EFT approach to New Physics

Cast observables in terms of \mathscr{C}_{ij} and Λ_{NP} ; Apply current data (limits, ...) $\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\text{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\text{CLFV}}^2} (\mathscr{L}_{\alpha} \leftrightarrow \mathscr{L}_{\beta}) + \ldots + \frac{\mathscr{C}_9 \mathscr{O}^9}{\Lambda_{\text{LNV}}^{'5}} (0\nu 2\beta) + \ldots$

 \Rightarrow Constrain \mathscr{C}_{ij} and/or infer sensitivity of process to large sets of \mathscr{C}_{ij}

 \Rightarrow Hints on Λ_{NP} (and on properties of new states & nature of couplings)

Deceptively simple task... different new physics scales, numerous operators! Technically very involved! Many contributions in recent years (at all levels!)

Muon cLFV: EFT approach to New Physics

Cast current data (limits, ...) in terms of \mathscr{C}_{ii} and Λ_{NP} : cLFV operators (\mathscr{O}^6)

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

Simple examples: at leading order one has

 $BR(\mu \to e\gamma) \simeq 384\pi^2 \frac{v^4}{\Lambda^4} \left(|C_{D,L}|^2 + |C_{D,R}|^2 \right)$ $BR(\mu \to eee) \simeq \frac{v^4}{\Lambda^4} \left[\frac{1}{8} |C_{S,LL}|^2 + 2 |C_{V,RR} + 4eC_{D,L}|^2 + (64 \ln \frac{m_{\mu}}{m_e} - 136) e |C_{D,L}|^2 + |C_{V,RL} + 4eC_{D,L}|^2 \right] + (L \leftrightarrow R)$ $CR(\mu - e, N): far more involved (nuclear target effects, spin (in)-dependent contributions, ...)$

	$Pr(u^{+} \rightarrow e^{+} r)$		$\mathbf{P}_{\mathbf{r}}(x^{+}, y, z^{+}, z^{-}, z^{+})$		D-Au/Al	
	$4.2 \cdot 10^{-13}$	$4.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-12}$	$5.0 \cdot 10^{-15}$	$7.0 \cdot 10^{-13}$	$\rightarrow e$ 1.0 · 10 ⁻¹⁶
C_L^D	$1.0\cdot 10^{-8}$	$3.1\cdot 10^{-9}$	$2.0\cdot 10^{-7}$	$1.4 \cdot 10^{-8}$	$2.0 \cdot 10^{-7}$	$2.9\cdot 10^{-9}$
C_{ee}^{o}	$4.8\cdot10^{-5}$	$1.5\cdot 10^{-5}$	$8.1\cdot 10^{-7}$	5.8-10-8	$1.4\cdot 10^{-3}$	$2.1\cdot 10^{-5}$
$C^{S \ LL}_{\mu\mu}$	$2.2 \cdot 10^{-7}$	$7.2\cdot 10^{-8}$	4.6.10-0	$3.3\cdot 10^{-7}$	$7.1 \cdot 10^{-6}$	$1.0\cdot 10^{-7}$
$C_{\tau\tau}^{S\ LL}$	$1.2\cdot 10^{-6}$	$3.7\cdot 10^{-7}$	$2.4\cdot 10^{-5}$	$1.7\cdot 10^{-6}$	$2.4\cdot 10^{-5}$	$3.5\cdot 10^{-7}$
$C_{\tau\tau}^{T\ LL}$	$2.9\cdot 10^{-9}$	$9.0\cdot10^{-10}$	$5.7\cdot 10^{-8}$	$4.1\cdot 10^{-9}$	$5.9\cdot10^{-8}$	$8.5\cdot 10^{-10}$
$C_{bb}^{S\;LL}$	$2.8\cdot 10^{-6}$	$8.6\cdot 10^{-7}$	$5.4\cdot10^{-5}$	$3.8\cdot 10^{-6}$	$9.0\cdot10^{-7}$	$1.2\cdot 10^{-8}$
$C_{bb}^{T\;LL}$	$2.1\cdot 10^{-9}$	$6.4\cdot 10^{-10}$	$4.1\cdot 10^{-8}$	$2.9\cdot 10^{-9}$	$4.2\cdot10^{-8}$	$6.0\cdot 10^{-10}$
$C_{ee}^{V \ RR}$	$3.0 \ 10^{-5}$	$9.4\cdot 10^{-6}$	$2.1\cdot 10^{-7}$	$1.5\cdot 10^{-8}$	$2.1 \cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C^{V RR}_{\mu\mu}$	$3.0 \cdot 10^{-5}$	$9.4\cdot 10^{-6}$	$1.6\cdot 10^{-5}$	1.1.10-0	$2.1\cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C_{ au au}^{VRR}$	$1.0\cdot10^{-4}$	$3.2\cdot10^{-5}$	$5.3\cdot 10^{-5}$	$3.8\cdot 10^{-6}$	$4.8\cdot 10^{-6}$	$7.9\cdot 10^{-8}$
$C_{bb}^{V\;RR}$	$3.5\cdot10^{-4}$	$1.1\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.8\cdot 10^{-6}$	$6.0\cdot 10^{-6}$	$1.0\cdot 10^{-7}$
C_{bb}^{RA}	$4.2\cdot 10^{-4}$	$1.3\cdot 10^{-4}$	$6.5\cdot 10^{-3}$	$4.6\cdot 10^{-4}$	$1.3\cdot 10^{-3}$	$2.2\cdot 10^{-5}$
C_{bb}^{RV}	$2.1 \cdot 10^{-3}$	$6.4\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.7\cdot 10^{-6}$	$6.0\cdot 10^{-6}$	$1.0\cdot 10^{-7}$

[Crivellin et al, 2017 (courtesy of M. Pruna)]

Simple "one-at-a-time" limits: cLFV rates in terms of one C_{D.S...}:

 \Rightarrow BR($\mu \rightarrow e\gamma$) depends on dipole C_D

(but **also sensitive** to scalar/tensor/vector contributions - RGE mixing, loops, ...)

Unexpected findings!

▶ Include as many observables & operators as possible! (e.g. $\mu e \gamma \gamma$ contact interactions, [Davidson et al, 2007.09612] angular observables in polarised $\mu \rightarrow 3e$ decays [Bolton, Petcov, 2204.03468], ...)

Muon cLFV: EFT approach to New Physics

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

And results of a recent approach:

$$\mathscr{L}_{\mathsf{NP, cLFV}}^{\mathsf{eff}} = \frac{1}{\Lambda^2} \Big[C_D(\bar{e}\sigma^{\nu\rho}P_R\mu)F_{\nu\rho} + C_S(\bar{e}P_R\mu)(\bar{e}P_Re) + C_{VR}(\bar{e}\gamma^{\nu}P_L\mu)(\bar{e}\gamma_{\nu}P_Re) + C_{VL}(\bar{e}\gamma^{\nu}P_L\mu)(\bar{e}\gamma_{\nu}P_Le) + C_{\mathsf{N-light}}\mathcal{O}_{\mathsf{N-light}} + C_{\mathsf{N-heavy}\perp}\mathcal{O}_{\mathsf{N-heavy}\perp} \Big]$$

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

Fully exploring the potential of atomic (elastic) muon-electron conversion, $CR(\mu - e, N)$: Comparatively more involved theoretical approach!

Important nuclear effects ("new" non-relativistic ET treatment: inclusion of intrinsic nucleon and muon velocities, lepton wave functions, full nuclear response - factored from cLFV physics ...) [see Cirigliano et al, 2203.09547; Hoferichter et al, 2204.06005 & Haxton et al, 2208.07945; among others ...]

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

Fully exploring the potential of atomic (elastic) muon-electron conversion, $CR(\mu - e, N)$: Comparatively more involved theoretical approach!

Explore target-nucleus dependence to distinguish dominant operator (hint on NP model!) [extensive contributions since Kitano et al, 0203110! see Davidson et al, 1810.01884; Heeck et al, 2203.00702, ...]

Choice of future targets offering the largest complementarity with respect to Aluminium (Mu2e, COMET)

$$BR_{SI}(\mu A \rightarrow eA) = \frac{32G_F^2}{\Gamma_{capture}} \left[\left| C_{V,R}^{pp} V^{(p)} + C_{S,L}^{pp'} S^{(p)} + C_{V,R}^{nn} V^{(n)} + C_{S,L}^{nn'} S^{(n)} + C_{D,L} \frac{D}{4} \right|^2 + \{L \leftrightarrow R\} \right].$$

$$Overlap integrals:$$
more distinguishable at large Z !
[Heeck et al, 2203.00702]
[Heeck et al, 2203.00702]

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

Fully exploring the potential of atomic (elastic) muon-electron conversion, $CR(\mu - e, N)$: Comparatively more involved theoretical approach!

Explore target-nucleus dependence to distinguish dominant operator (hint on NP model!) [extensive contributions since Kitano et al, 0203110! see Davidson et al, 1810.01884; Heeck et al, 2203.00702, ...]

Choice of future targets offering the largest complementarity with respect to Aluminium (Mu2e, COMET)

- Heavier nuclei (Au, Pb)! ... not feasible... (AMF?)
- Among experimental-friendly $Z \le 25$ targets several (theoretically good) candidates Li-7, Ti-50, Ti-49, Cr-54, ..., V-51

 $\Rightarrow Li-7 \text{ and/or V-51}: preferable "second" targets post CR(<math>\mu - e$,Al) observation

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

Fully exploring the potential of atomic (elastic) muon-electron conversion, $CR(\mu - e, N)$: And of its lepton number violating counterpart, $\mu^- + (A, Z) \rightarrow e^+ + (A, Z - 2)^{(*)}$ A unique connection between LNV (in association with Majorana nature and possibly, neutrino mass generation) and cLFV

- From a theoretical point of view, not straightforward!
- Higher-dimension operators in $\mathscr{L}^{\mathsf{eff}}$ (dim 6, 10, 14...)
- Nuclear matrix elements extremely hard to compute! $\Gamma_{\mu e}^{\text{LNV}} \approx \frac{G_F^4 g_A^4}{32\pi^2} |\epsilon_{C_j}^2| \frac{m_e^2 m_{\mu}^2}{R^2} |F(Z-2,E_e)| < \phi_{\mu} >^2 |\mathcal{M}^{(\mu^-,e^+)}|^2$ (only two $\mathcal{M}^{(\mu^-,e^+)}$ known, for Ti-48...) [Domin et al, 0409033; Simkovic et al, 0103029]
 - \Rightarrow Very hard to draw implications... Must tackle NME!

Best sensitivity: Ca, S and Ti (!?) $CR(\mu^- - e^+, Ti) < O(10^{-15})$ [Yeo et al, 1705.07464]

Muon flavoured probes @ high scales

 $\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\text{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\text{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$ $\Rightarrow \text{cLFV data to constrain } \mathscr{C}^6 \text{ (and infer sensitivity of a process to a given operator } \mathscr{O}^6 \text{)}$

Semileptonic decays vs. Drell-Yan at the LHC: lepton flavour'ed (violating) tails

Muon flavoured probes @ high scales

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

Flavour physics (leptons!) at a Muon Collider: what could we expect?

Extraordinary potential to probe NP at the source of cLFV leptonic decays

$$\Rightarrow \text{Case of } \mu^{+}\mu^{+} \text{ collider:}$$

$$\text{Recall } \text{BR}(\tau \to 3\mu) = \frac{\text{BR}(\tau \to e\nu\bar{\nu})}{4G_{F}^{2}} [|C_{LL}|^{2} + |C_{RR}|^{2} + 1/2(|C_{LR}|^{2} + |C_{RL}|^{2})]$$

$$\sigma(\mu^{+}\mu^{+} \to \mu^{+}\tau^{+}) = \frac{s}{4\pi} [|C_{LL}|^{2} + |C_{RR}|^{2} + 1/6(|C_{LR}|^{2} + |C_{RL}|^{2})]$$

Process	Current BR limit	$N(\mu^+\mu^+ \to \mu^+\tau^+)$
$\mu \to 3e$	$< 1.0 \times 10^{-12}$	$< 6.7 \times 10^{-2}$
$\tau \rightarrow 3e$	$<2.7\times10^{-8}$	$< 1.0 \times 10^4$
$\tau \to \mu^+ \mu^- e^-$	$<2.7\times10^{-8}$	$< 1.0 \times 10^{4}$
$\tau \to e^+ \mu^- \mu^-$	$<1.7\times10^{-8}$	$< 6.4 \times 10^3$
$\tau \to e^+ e^- \mu^-$	$<1.8\times10^{-8}$	$< 6.8 \times 10^3$
$ au o \mu^+ e^- e^-$	$<1.5\times10^{-8}$	$< 5.7 \times 10^3$
$ au ightarrow 3\mu$	$<2.1\times10^{-8}$	$< 7.9 \times 10^3$

Number of events for a muon collider at $\sqrt{s} = 2$ TeV and $\mathscr{L} = 1$ ab⁻¹ (allowed from cLFV search limits)

cLFV transitions "observable", even under the strong cLFV current bounds! And also for future sensitivities

[Fridell et al, 2304.14020]

See talk by N. Craig

The probing power of flavour muons

Learning about New Physics from muon cLFV: SM extensions

Extremely active research field! A few examples of the constraining & probing power of muons amidst a vast array of well motivated constructions...

Muon cLFV: hinting towards the NP model

- Models of **New Physics** can change SM's predictions, introducing:
 - (i) **new sources** of **flavour violation** (corrections to SM vertices, new SM-NP interactions)
 - (ii) **new Lorentz structure** in the "four-fermion" interaction \Rightarrow new **effective operators**

 \Rightarrow new cLFV couplings to SM and/or to new fields in the Feynman diagrams!

(A) cLFV couplings +++> extended gauge/scalar sectors

$$\mathscr{L}_{\phi} = g^{\phi}_{\ell\ell'} \bar{\ell}' \ell \phi + g^{\phi}_{qq'} \bar{q}' q \phi + \tilde{g}^{\phi}_{ff'} \bar{f}' f V_{\mathsf{SM}}$$
$$\sim g^{\phi}_{e\mu} \bar{\mu} e \phi + g^{\phi}_{qq} \bar{q}' q \phi + \tilde{g}^{\phi}_{e\mu} \bar{\mu} e Z_{\mathsf{SM}}$$

(A): an example - New contributions to $\mu - e$ conversion

Higher order: many additional contributions! Boxes, penguins, ...

Muon cLFV: hinting towards the NP model

- Models of New Physics can change SM's predictions, introducing:
 - (i) new sources of flavour violation (corrections to SM vertices, new SM-NP interactions)
 - (ii) **new Lorentz structure** in the "four-fermion" interaction \Rightarrow new **effective operators**

 \Rightarrow new cLFV couplings to SM and/or to new fields in the Feynman diagrams!

- $\textbf{B) cLFV couplings} \iff \textbf{new fermions \& new scalar fields} \qquad [\psi, \phi \text{ carry lepton flavour \& number}]$ $\mathcal{L}_{\psi\phi} = h_{\ell\psi\phi} \bar{\ell} \psi \phi + h_{q\psi\phi} \bar{q} \psi \phi + h_{\ell q \phi} \bar{\ell} q \phi + \dots$ $\sim h_{\mu\psi\phi} \bar{\mu} \psi \phi + h_{e\psi\phi} \bar{\psi} e \phi + h_{q\psi\phi} \bar{q} \psi \phi + h_{\mu q \phi} \bar{\mu} q \phi + h_{eq\phi} \bar{q} e \phi + \dots$
- **(B):** further **new contributions** to μe conversion

Hinting towards the NP model: peculiar patterns cms

- What can we then learn about New Physics from cLFV observables?
 - ⇒ Let us consider a "user-friendly" canvas: the type I SUSY seesaw

While $\mu \rightarrow e\gamma$ is a "dipole-dominated" transition, $\mu \rightarrow 3e$ and $\mu - e$ conversion receive contributions from anapole (long-distance), γ , Z & Higgs penguins, boxes, ...

If dominant contribution to $\mu - e$ conversion from:

(i) Photon penguin \Rightarrow correlation between $BR(\mu \rightarrow e\gamma)$, $BR(\mu \rightarrow 3e)$ and $CR(\mu - e, N) CR(\mu - e, N) \approx 5 \times 10^{-3} BR(\mu \rightarrow e\gamma)$; $BR(\mu \rightarrow 3e) \approx 6 \times 10^{-3} BR(\mu \rightarrow e\gamma)$

(ii) Z penguin \Rightarrow correlation between BR($\mu \rightarrow 3e$) and CR($\mu - e$, N) [and BR($Z \rightarrow e\mu$)] (iii) Higgs penguin \Rightarrow unusual patterns! E.g. CR($\mu - e$, N) $\approx 0.08 - 0.15$ BR($\mu \rightarrow e\gamma$)

Peculiar patterns: disentangling seesaws

▶ What can we then learn about **New Physics** from cLFV observables?

Seesaw realisations: distinctive signatures for numerous cLFV observables ratios of observables to identify seesaw mediators & constrain their masses!

Hinting towards the NP model: peculiar patterns cms

- What can we then learn about New Physics from cLFV observables?
 - Most models of NP predict/accommodate extensive ranges for cLFV observables (little info on scale and on the nature of couplings)

Model	$\mu ightarrow eee$	$\mu N ightarrow eN$	$rac{{ m BR}(\mu{ ightarrow}eee)}{{ m BR}(\mu{ ightarrow}e\gamma)}$	$rac{{ m CR}(\mu N ightarrow e N)}{{ m BR}(\mu ightarrow e \gamma)}$	$ ilde{ u}$ $(ilde{\ell})$
MSSM	Loop	Loop	$\approx 6 \times 10^{-3}$	$10^{-3} - 10^{-2}$	$\ell_i \qquad \qquad$
Type-I seesaw	$Loop^*$	Loop*	$3 \times 10^{-3} - 0.3$	0.1-10	
Type-II seesaw	Tree	Loop	$(0.1 - 3) \times 10^3$	$\mathcal{O}(10^{-2})$	
Type-III seesaw	Tree	Tree	$\approx 10^3$	$\mathcal{O}(10^3)$	
LFV Higgs	$Loop^\dagger$	Loop ^{*†}	$\approx 10^{-2}$	$\mathcal{O}(0.1)$	ν
Composite Higgs	$Loop^*$	Loop*	0.05 - 0.5	2 - 20	$\frac{\mu}{\tilde{\chi}^{\pm}}$

[adapted from Calibbi et al, 1709.00294]

Upon experimental determination of rates for cLFV transitions:

comparison of
$$\frac{BR(\mu \to 3e)}{BR(\mu \to e\gamma)}\Big|_{exp}$$
 with $\frac{BR(\mu \to 3e)}{BR(\mu \to e\gamma)}\Big|_{NP-th}$
and of $\frac{CR(\mu - e, N)}{BR(\mu \to e\gamma)}\Big|_{exp}$ with $\frac{CR(\mu - e, N)}{BR(\mu \to e\gamma)}\Big|_{NP-th}$ Probe NP model
at the source of cLFV

 ℓ_j

 $\ell_i(\ell_k)$

 $\ell_i(\ell_k)$

 $\gamma (Z, H)$

Hinting towards the NP model: peculiar patterns cms

- What can we then learn about New Physics from cLFV observables?
 - Most models of NP predict/accommodate extensive ranges for cLFV observables (little info on scale and on the nature of couplings)

Model	$\mu ightarrow eee$	$\mu N ightarrow eN$	$rac{{ m BR}(\mu{ ightarrow}eee)}{{ m BR}(\mu{ ightarrow}e\gamma)}$	$rac{{ m CR}(\mu N ightarrow e N)}{{ m BR}(\mu ightarrow e \gamma)}$	$ ilde{ u}$ $(ilde{\ell})$
MSSM	Loop	Loop	$\approx 6 \times 10^{-3}$	$10^{-3} - 10^{-2}$	$\ell_i \qquad \ell_i \qquad \ell_i$
Type-I seesaw	$Loop^*$	Loop*	$3 \times 10^{-3} - 0.3$	0.1-10	
Type-II seesaw	Tree	Loop	$(0.1 - 3) \times 10^3$	$\mathcal{O}(10^{-2})$	$\gamma(\mathbf{Z},\mathbf{H})$
Type-III seesaw	Tree	Tree	$\approx 10^3$	$\mathcal{O}(10^3)$	$\ell_{j}\left(\ell_{k} ight)$
LFV Higgs	$Loop^\dagger$	Loop ^{*†}	$\approx 10^{-2}$	$\mathcal{O}(0.1)$	$\tilde{ u}$ $(\tilde{\ell})$
Composite Higgs	Loop*	$Loop^*$	0.05 - 0.5	2 - 20	$\mu \qquad \qquad$
					5

[adapted from Calibbi et al, 1709.00294]

In the absence of a direct discovery of the new states
⇒ correlations of observables might help disentangling models of cLFV
⇒ hint towards some models, falsify certain realisations
In all cases provide complementary information to direct searches!

(Well-motivated) NP models & μ cLFV

What can we then learn about New Physics from cLFV observables?

Not all models of NP necessarily lead to "experimentally observable" cLFV... (e.g. very heavy new states, symmetry-protection, ...) One can trivially compute contributions to cLFV observables, and thus exclude (or not) regimes of a given model... Or do much more!

A few illustrative examples of muon-cLFV in well-motivated BSM realisations: from minimal SM extensions to UV-complete constructions,

aiming at addressing SM observational problems and further "tensions" (anomalies)

Addressing anomalies: extensions of SM's gauge sector and $(g - 2)_{\ell}$ cLFV from LFUV (B-meson anomalies ...)

Mechanisms of neutrino mass generation (LFV in neutral sector!)

GUT inspired, higher-order (scotogenic), ... Back to seesaw cLFV "signatures" - and how CP violating phases impacts them (Recall $m_{\nu} \Rightarrow$ LFV; LFV does not require $m_{\nu} \neq 0$!!)

Minimal extensions of the SM: anomalies & μ -physics cms

Extensive studies of SM extensions capable of addressing "anomalous" behaviours (i.e. tensions with SM expectation): $(g - 2)_{\ell}$, and LFUV in B-meson decays

Minimal, testable models (first step towards complete constructions)

cLFV ↔ LFUV (?)

Minimal SM extension via light vector Z' (leptophilic cLFV couplings): $\Delta a_e^{\text{Rb}} = Z' \Delta a_e^{\text{Rb}} \Delta a_\mu$ explain both Δa_μ and Δa_e

$$\mathcal{L}_{Z'}^{\text{int}} = \sum_{\alpha,\beta} Z'_{\mu} \left[\bar{\ell}_{\alpha} \gamma^{\mu} (g_{L}^{\alpha\beta} P_{L} + g_{R}^{\alpha\beta} P_{R}) \boldsymbol{\ell}_{\beta} + \bar{\boldsymbol{\nu}}_{\alpha} \gamma^{\mu} (g_{L}^{\alpha\beta} P_{L}) \boldsymbol{\nu}_{\beta} \right] + \text{H.c.}$$

 $\Rightarrow \textbf{Saturate } \Delta a_{\mu} (\Delta a_{e} \text{ and } \Delta a_{\tau} \text{ strictly SM-like})$ Very stringent constraints from LFU tests $(Z \rightarrow \ell \ell)$ and cLFV $(\mu \rightarrow e\gamma, \tau \rightarrow \mu \bar{e}\mu \text{ and } Mu - \overline{Mu} !)$

⇒ Clear departure from SM in forward-backward asymmetry!

See talk by N. Craíg

Scotogenic models: neutrinos, DM and cLFV

S

1

0

 η

 $\mathbf{2}$

1

Scotogenic models: a link between neutrino mass generation and dark matter! [Ma, 2006] Additional Z₂ symmetry: stabilises dark matter candidate ... but

⇒ neutrino masses @ 1-loop

 $SU(2)_L$

 $U(1)_Y$

 Ψ_1

 $\mathbf{2}$

-1

 Ψ_2

 $\mathbf{2}$

1

Recent example: SM extended by $SU(2)_L$ Weyl fermions,

Majorana fermion singlets & scalars

 $\Rightarrow \nu$ mass generation, DM candidates,

 $(g-2)_{\mu}$ and **BAU** via leptogenesis!

[Alvarez et al, 2301.08485]

 F_1

1

0

 F_2

1

0

▷ cLFV observables: strict correlation between $BR(\mu \rightarrow e\gamma)$, $BR(\mu \rightarrow 3e)$ [dipole dominated] less manifest for τ decays [non-negligible box contributions] muon cLFV decays \Rightarrow falsify model @ MEG II and Mu3e !

GUT models: type II seesaw (and cLFV)

Grand unified models: several possibilities explored, from (SUSY) SU(5) to SO(10),s deux in Many realisations include mechanisms of v mass generation, and open the door to flavour violation (at all levels) Realised at very high scales (M_{GUT}) - how to probe and test them?

Illustrative example: non-susy SU(5) GUT & type II seesaw [scalar triplet Δ , SU(5) (LQ) partners in 15] (variations to avoid "wrong" m_f relations)

▶ cLFV observables: evident correlation between BR($\mu \rightarrow 3e$), BR($K_L \rightarrow \mu e$) and CR($e - \mu$, N), ratio dictated by masses of mediators (triplet Δ and SU(5) leptoquark) future observation muon cLFV decays \Rightarrow hint on m_{Δ}/m_{LQ} If BR($K_L \rightarrow \mu e$) $\geq 10 \times CR(e - \mu, N) \Rightarrow$ disfavour IO, $m_1^{\nu} \leq 10^{-2} \text{ eV}$

Flavoured probes of neutrino masses: SM & sterile neutrinos (... and CPV phases!)

How leptonic CP violating phases can impact our expectations

Peculiar patterns: disentangling seesaws

Models of NP (and leptonic LFV) predict/accommodate extensive ranges for cLFV...

Seesaw realisations: distinctive signatures for numerous cLFV observables ratios of observables to identify seesaw mediators & constrain their masses!

But! In general, such studies assume CP conserving couplings...

CP likely violated (PMNS, and other Dirac & Majorana NP phases \Rightarrow leptogenesis!) Can leptonic CP violating phases impact our naïve expectations for cLFV patterns?

Toy models of massive Majorana neutrinos

Simplified "seesaw models" for phenomenology: SM + 2 heavy neutral leptons Les deux infinit

Ad-hoc (low-energy) constructions: SM extended via n_S Majorana massive states (HNLs) No assumption on mechanism of mass generation Well-defined interactions in physical basis

Phenomenological low-energy limit of complete constructions (type I seesaw, ISS, ...)

 \Rightarrow Impact to any interpretation of experimental data

cLFV signatures: ratios of observables to identify mediators & constrain their masses! But - CP violating phases do matter! And impact naïve expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

cLFV signatures: ratios of observables to identify mediators & constrain their masses! But - CP violating phases do matter! And impact naïve expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Future cLFV data: what if CPV & cLFV?

cLFV searches: future data can shed light on underlying NP model !

But - CP violating phases do matter! And impact naïve theoretical expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Impact of CPV phases regarding experimental prospects!

Some illustrative benchmark points - CP conserving (P_i) and CPV variants (P'_i)

$BR(\mu \to e$	(γ)	$BR(\mu \to 3$	Be)	$\operatorname{CR}(\mu - e, \operatorname{Al})$	$BR(\tau \to 3\mu)$	$BR(Z \rightarrow$
3×10^{-16}	0	1×10^{-15}	\checkmark	$9 imes 10^{-15}$ \checkmark	2×10^{-13} o	3×10^{-12}
1×10^{-13}	\checkmark	2×10^{-14}	\checkmark	1×10^{-16} \checkmark	1×10^{-10} \checkmark	2×10^{-9}
2×10^{-23}	0	2×10^{-20}	0	2×10^{-19} o	1×10^{-10} \checkmark	3×10^{-9}
6×10^{-14}	\checkmark	4×10^{-14}	\checkmark	9×10^{-14} \checkmark	8×10^{-11} \checkmark	1×10^{-9}
2×10^{-11}	X	3×10^{-10}	X	$3 imes 10^{-9}$ X	2×10^{-8} \checkmark	8×10^{-7}
8×10^{-15}	0	1×10^{-14}	\checkmark	6×10^{-14} \checkmark	2×10^{-9} \checkmark	1×10^{-8}

[Abada, Kriewald, AMT, 2107.06313]

 $\mu \tau$

0

 P_2 : only cLFV τ decays within future reach; cLFV μ decays beyond sensitivity...

What if one observes $\mu - e$ and $\mu \rightarrow 3e$? **Disfavour cLFV** from HNL? or CPV...

P'_2: all considered cLFV transitions within reach!

(Non)-observation of cLFV observable(s) \Rightarrow not necessarily disfavour HNL extension!

 P_1

 P'_1

 P_2

 P'_2

 P_3

 P'_3

Future cLFV data: what if CPV & cLFV?

cLFV searches: future data can shed light on underlying NP model !

But - CP violating phases do matter! And impact naïve theoretical expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Impact of CPV phases regarding experimental prospects!

Some illustrative benchmark points - CP conserving (P_i) and CPV variants (P'_i)

	$BR(\mu \to e\gamma)$	$\mathrm{BR}(\mu \to 3e)$	$\operatorname{CR}(\mu - e, \operatorname{Al})$	$BR(\tau \to 3\mu)$	$ \operatorname{BR}(Z \to$
P_1	3×10^{-16} o	1×10^{-15} \checkmark	9×10^{-15} \checkmark	2×10^{-13} o	3×10^{-1}
P'_1	1×10^{-13} \checkmark	2×10^{-14} \checkmark	1×10^{-16} \checkmark	1×10^{-10} \checkmark	2×10^{-9}
P_2	2×10^{-23} o	2×10^{-20} o	2×10^{-19} o	1×10^{-10} \checkmark	3×10^{-9}
P'_2	6×10^{-14} \checkmark	4×10^{-14} \checkmark	9×10^{-14} \checkmark	8×10^{-11} \checkmark	1×10^{-9}
P_3	2×10^{-11} X	3×10^{-10} X	3×10^{-9} X	2×10^{-8} \checkmark	8×10^{-7}
P'_3	8×10^{-15} o	1×10^{-14} \checkmark	6×10^{-14} \checkmark	2×10^{-9} \checkmark	1×10^{-8}
	•	•			

P₃: associated with large active-sterile mixings

[Abada, Kriewald, AMT, 2107.06313]

CP conserving case excluded due conflict with bounds from cLFV μ decays

P'₃: suppression of rates from CPV phases (Dirac & Majorana)

reconcile large mixing regimes with observation!

CPV phases must be included to thoroughly assess viability of HNL regimes!

Future cLFV data: finding leptonic CPV

cLFV searches: future data can shed light on underlying NP model !

But - CP violating phases do matter! And impact naïve theoretical expectations...

How to look for the presence of new sources of leptonic CP violation, in association with cLFV? Consider further observables: cLFV Z boson decays and associated CP asymmetries!

$$\mathcal{A}_{CP}(Z \to \ell_{\alpha}\ell_{\beta}) = \frac{\Gamma(Z \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) - \Gamma(Z \to \ell_{\alpha}^{+}\ell_{\beta}^{-})}{\Gamma(Z \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) + \Gamma(Z \to \ell_{\alpha}^{+}\ell_{\beta}^{-})}$$

 $BR(Z \rightarrow \mu \tau)$ and $BR(\tau \rightarrow 3\mu)$

both within future sensitivity

A $\mathscr{A}_{CP}(Z \to \mu \tau)$ as large as 20%!

⇒ Joint observation highly suggestive of SM extended by at least 2 heavy sterile ν cLFV & CPV at work!

Outlook & conclusions

μ cLFV: overview

Confirmed observations suggest the need to go beyond the Standard Model Other than v masses, many experimental tensions appear to be "nested" in lepton-related observables

Lepton physics (muons!) might offer valuable hints upon proposals of New Physics and valuable probes to test the SM extensions!

Experimental opportunities with muons: near future discovery of New Physics, possibly before observation of new resonance at colliders

 \Rightarrow Theory efforts & theoretical approaches must be ready! (on par!)

- ***** Consider as **many observables as possible** (proposal of new ones!)
- # Explore distinct approaches: effective theories & NP models

Increase theoretical control: nuclear interactions in atomic $\mu - e$ conversion, running between scales, operator mixing effects, ...

Include as many sources of data as possible, synergies of observables & sectors * Actively contribute to prepare next round of experiments (e.g. target nuclei, ...)

Lepton physics (muons!): aµazing opportunities ahead!
Calling upon joint theory-experimental effort

μ cLFV: overview

Solution Confirmed observations suggest the need to go beyond the Standard Model Other than ν masses, many experimental tensions appear to be "nested" in lepton-related observables

Lepton physics (muons!) might offer valuable hints upon proposals of New Physics and valuable probes to test the SM extensions!

- Experimental opportunities with muons: near future discovery of New Physics, possibly before observation of new resonance at colliders
 - \Rightarrow So much to be learnt from muon flavours...

 # Hint on New Physics couplings & new Lorentz structure (i.e. new interactions)
 # Exclude regimes and regions in BSM parameter space
 # Falsify a model (directly, or through correlations - cLFV patterns) and/or reduce "ambiguities" on other sectors... (and remember - CPV phases matter in flavours!)

***** Probe otherwise unreachable scales!

"Leave no (flavoured) stone unturned" leave no single grain of sand unobserved,

Additional material

Anomalous magnetic moments: muons and electrons cms

Anomalous magnetic moment of the muon @ 2021:

Anomalous magnetic moment of the electron (2018) $\Delta a_e^{\text{Cs}} = -0.88(36) \times 10^{-12} \quad \sim -2.3\sigma$ (2020) $\Delta a_e^{\text{Rb}} = 0.48(30) \times 10^{-12} \quad \sim +1.7\sigma$

New Rhysiss: badly needed? or not?

Difference of 5.4 σ in determination of α ?! (SM input parameter!)

Two anomalies in Δa_{μ} and Δa_{e}^{CS} ?

Possible hint of lepton flavour universality violation?

Lepton universality (MFV) naïvely suggests $\Delta a_e / \Delta a_\mu \approx m_e^2 / m_\mu^2 \sim + 2.4 \times 10^{-5}$

but $\Delta a_e^{\text{Cs}}/\Delta a_\mu \sim -3.3 \times 10^{-4}...$

CONS IN2P3

Radiative and 3-body muon decay channels

► cLFV decay: $\mu^+ \rightarrow e^+ \gamma$

► Event signature: $E_e = E_{\gamma} = m_{\mu}/2$ (~ 52.8 MeV) Back-to-back $e^+ - \gamma$ ($\theta \sim 180^\circ$); Time coincidence

- ► Current status: $BR(\mu \rightarrow e\gamma) \lesssim 4.2 \times 10^{-13}$ [MEG, '16]
- **Future prospects:** MEG II @ PSI \rightsquigarrow sensitivity 4×10^{-14}

► cLFV decay: $\mu^+ \rightarrow e^+ e^- e^+$ ► Event signature: $\sum E_e = m_\mu$; $\sum \vec{P_e} = \vec{0}$

common vertex; Time coincidence

- ► Current status: $BR(\mu \rightarrow eee) \lesssim 1.0 \times 10^{-12}$ [SINDRUM, '88]
- **Future prospects:** Mu3e @ PSI

Phase I: 10^{-15} (π E5 μ source) \Rightarrow Phase II: 10^{-16} (H.I. μ -beam)

Nuclear assisted cLFV and Muonium channels

- ► cLFV $\mu^- e^-$ conversion: $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$
- ► Event signature: single mono-energetic electron, $E_{\mu e}^{\text{Al, Pb, Ti}} \approx \mathcal{O}(100 \text{ MeV})$
- ► Current status: $CR(\mu e, Au) \lesssim 7 \times 10^{-13}$ [SINDRUM, '06]
- Future prospects (AI): Mu2e @ FNAL I (II) $\sim 6 \times 10^{-17}$ (few $\times 10^{-18}$);

COMET @ J-PARC I (II) $\sim 10^{-15}(10^{-18})$

NP

► Coulomb enhaced muonic atom decay: $\mu^-e^- \rightarrow e^-e^-$

$$\Gamma(\mu^- e^- \to e^- e^-, \mathbf{N}) \propto \sigma_{\mu e \to e e} v_{\text{rel}} \left[(Z-1) \alpha m_e \right]^3 / \pi$$

 \Rightarrow Consider large Z targets! Pb, U!?

- ▶ Clean experimental signature: back-to-back electrons, $E_{e^-} \approx m_\mu/2^{-e^-}$
- Experimental status: New observable!

► cLFV Mu – Mu conversion \Rightarrow Oscillation between $(e^-\mu^+) \iff (e^+\mu^-)$

- **Current status:** $P(Mu \overline{Mu}) < 8.3 \times 10^{-11}$ [Willmann et al, 1999]
- Future prospects: MUSE (J-PARC)? FNAL?

LNV atomic conversion

► LNV ($\Delta L = 2$) $\mu^- - e^+$ conversion: $\mu^- + (A, Z) \rightarrow e^+ + (A, Z - 2)^*$

 $\mu^- - e^-$: coherent, single nucleon, nuclear ground state $\mu^- - e^+$: 2 nucleons ($\Delta Q = 2$), possibly excited final states

Event signature: single positron - but *complex* E-spectrum πN^* $E (\Lambda Z) = E (\Lambda Z)$

$$E_{\mu^-e^+}^{AI,GDR} = m_{\mu} - E_B(A, Z) - E_R(A, Z) - \Delta_{Z-2^{(*)}}$$
$$E_{\mu^-e^+}^{AI,GDR} \approx \mathcal{O}(83.9 \text{ MeV}) \quad [< \text{GDR}_{AI} > \sim 21.1 \text{ MeV} (6.7 \text{ MeV})]$$

Experimental status - present bounds:

Collaboration	year	Process	Bound
PSI/SINDRUM	1998	μ^- +Ti $ ightarrow e^+$ +Ca*	3.6×10^{-11}
PSI/SINDRUM	1998	$\mu^-+{ m Ti} ightarrow e^++{ m Ca}$	1.7×10^{-12}

Experimental status - future prospects:

Recent studies: **best sensitivity** associated with **Calcium**, **Sulphur** and **Titanium targets** $CR(\mu^{-} - e^{+}) < O(\text{ few} \times 10^{-15})$ for ⁴⁸Ti (both LNC and LNV searches) [Yeo et al, '17]

For Aluminium targets improvement of current sensitivity maybe very hard (even factor 10)...

u⁻-e⁻

conv

vour structure)

LFV-Alternatives:

 $\mu \rightarrow e + \gamma$

 $\mu \rightarrow 3e$

[Geib et al, '16]

logous EFT

μ⁻-e

con

treatment

Ονββ

(lepton number)

NV-Alternatives

μ⁻-μ⁺ conversion

 $K^+ \longrightarrow \pi^+ \mu^- \mu^-$

same experiment

Muon cLFV searches and axion-like particles

Axion-like particles: very light, "invisible" (neutral or feebly coupled) states

- ⇒ present in numerous well motivated NP models; role in astrophysics & cosmology
- ► If ALPs have flavour violating couplings to leptons, dedicated cLFV searches

 $\mu \rightarrow ea \ \mu \rightarrow e\gamma a$, among many others (including τ modes)

► Current limits:
$$BR(\mu^+ \rightarrow e^+a) < 2.6 \times 10^{-6}$$
 [TRIUMF, '86]
 $BR(\mu \rightarrow ea) < 5.8 \times 10^{-5}$ [TWIST, '14]
 $BR(\mu \rightarrow ea\gamma) < 1.1 \times 10^{-9}$ [Crystal Box, '88]

► Future reach (?): $BR(\mu \rightarrow ea) < 10^{-8}$ @ Mu3e [Perrevoort, '18] $BR(\mu \rightarrow ea) < 2 \times 10^{-6}$ @ COMET/Mu2e [Garcia i Tomo et al, '11] Possibly at MEG... $BR(\mu \rightarrow ea) < 3 \times 10^{-7}$ (?)

Interesting synergy between rare muon decays and ALP searches!

Further muonic probes of New Physics

★ Testing antimatter gravity with Muonium

▶ No direct test of gravity for antimatter ("heavy μ^+)

No test of weak equivalence principle (equivalence of gravitational and inertial masses) for **antimatter**

► Methods: Annual modulation of Muonium 1s-2s transition frequency

Mach Zehnder atom interferometer

 (μ^+)

- **Further muonic probes of New Physics**
 - **★** Testing antimatter gravity with Muonium
 - **The proton radius:** experiments with muonic Hydrogen
 - Measurement of proton radius relies on Lamb Shift

(sensitive to r_p)

- ► Proton radius determined with great accuracy
 - for muonic Hydrogen, ${}^{\mu}H$

An excess of 6σ deviations between r_p^{μ} and r_p^{e} ! New Physics?

Rare Lepton Number Violating ($\Delta L = 2$ **) decays**

- **★** LNV suggests the presence of Majorana states; opens the door for leptogenesis...
 - ▶ Neutrinoless double beta decays: $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

Current status: $m_{\beta\beta} < (61 - 165)$ meV [Kamland-Zen, '16]

► LNV in semileptonic tau and/or meson decays

	Current Bound		
	$\ell = e, \ \ell' = e$	$\ell=\mu,\ \ell'=\mu$	
$\left[K^- \to \ell^- \ell'^- \pi^+ \right]$	6.4×10^{-10}	1.1×10^{-9}	
$D^- \to \ell^- \ell'^- \pi^+$	1.1×10^{-6}	2.2×10^{-8}	
$D^- \to \ell^- \ell'^- K^+$	9.0×10^{-7}	1.0×10^{-5}	
$B^- \to \ell^- \ell'^- \pi^+$	2.3×10^{-8}	4.0×10^{-9}	
$B^- \to \ell^- \ell'^- K^+$	3.0×10^{-8}	4.1×10^{-8}	

TauFV, Super Charm-Tau factory... NA62, KOTO, KLEVER, ...

Experimental status: BaBar, Belle

	Current Bound		
	$\ell = e$	$\ell=\mu$	
$\tau^- \to \ell^+ \pi^- \pi^-$	2.0×10^{-8}	3.9×10^{-8}	
$\tau^- \to \ell^+ \pi^- K^-$	3.2×10^{-8}	4.8×10^{-8}	
$\tau^- \to \ell^+ K^- K^-$	3.3×10^{-8}	4.7×10^{-8}	

Rare lepton processes: cLFV tau decays

 $\blacktriangleright \text{ Radiative decay: } \tau^{\pm} \to \ell^{\pm} \gamma$

• Event signature:
$$E_{\text{final}} - \sqrt{s}/2 = \Delta E \sim 0;$$

 $M_{\text{final}} = M_{\ell\gamma} \sim m_{\tau}$

- ► Current status: $BR(\tau \to e\gamma) \lesssim 3.3 \times 10^{-8}$; $BR(\tau \to \mu\gamma) \lesssim 4.4 \times 10^{-8}$ [BaBar, '10]
- ► 3-body decays: $\tau^{\pm} \rightarrow \ell_i^{\pm} \ell_j^{\mp} \ell_k^{\pm}$
- Event signature: $E_{3\ell} \sqrt{s}/2 \sim 0$; $M_{3\ell} \sim m_{\tau}$
- ▶ Current status: $BR(\tau \rightarrow 3\ell) \lesssim O(10^{-8})$
- **Future experimental prospects:**

Belle II, LHCb Upgrades, ..., TauFV, (Super) Tau-Charm factories, FCC/CEPC BR $(\tau \rightarrow \ell \gamma) \leq 1 - 3 \times 10^{-9}$ BR $(\tau \rightarrow 3\ell) \leq 1 - 2 \times 10^{-10}$

[Lusiani, EPPSU'19]

cLFV semi-leptonic decays: tau leptons

► Meson(s) & charged lepton: $\tau \rightarrow \ell h^0$; $\tau \rightarrow \ell h_i h_j$

Meson decays: excellent testing grounds for lepton flavour dynamics - cLFV

► K, D and B meson decays: abundant data [LHCb, BNL, KTeV, BaBar, Cleo, Belle, ...] $BR(K_L \to \mu e) < 4.7 \times 10^{-12}; \quad BR(K^+ \to \pi^+ \mu^+ e^-) < 2.1 \times 10^{-11}$ $BR(D^0 \to \mu e) < 1.5 \times 10^{-8}; \quad BR(B \to \mu e) < 2.8 \times 10^{-9}, \dots$

► Future prospects: $BR(B_{(s)} \rightarrow \mu e) < O(10^{-10})$ LHCb'II, $BR(B \rightarrow X\tau e(\mu)) < O(10^{-6})$ Belle II, ...

cLFV decays at colliders

- $\triangleright Z$ boson decays: $Z
 ightarrow \ell_i \ell_j
 ightarrow Z$ s abundantly produced at LEP and at the LHC
 - ► Current bounds: $BR(Z \rightarrow e\mu) < 7.5 \times 10^{-7}$ [ATLAS, 2014]

 ${\sf BR}(Z \to \mu \tau) < 1.2 \times 10^{-5}; \quad {\sf BR}(Z \to e \tau) < 9.8 \times 10^{-6}$ [opal & delphi]

- ► Higgs boson decays: $H \rightarrow \ell_i \ell_j \quad \rightsquigarrow$ "Higgs-factory" at LHC study rare processes... ► Current data: BR $(H \rightarrow \mu \tau) \lesssim 0.0025$ [CMS]; BR $(H \rightarrow e \tau) \lesssim 0.0061$ [CMS]
- ► Production of "on-shell" NP states ⇒ new interactions induce cLFV decays

Multiplicity, composition, E_{miss} , ...: properties of final state strongly model-dependent...

► Future experimental prospects: LHC Run 2 !!

... and a **Higgs factory** (linear/circular) ... and **FCC-ee** (at the Z pole)

μτ_h, 1 Jet

Observed

 $e\tau_h$, 1 Jet

۲

Observed

Limits on "effective" Yukawa couplings: $\Gamma($ [CMS Coll, 2105.03007]

$$\mathrm{H} \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{\mathrm{H}}}{8\pi} (|Y_{\ell^{\alpha} \ell^{\beta}}|^{2} + |Y_{\ell^{\beta} \ell^{\alpha}}|^{2})$$

cLFV & LFUV: light meson decays

LFUV in kaon and pion leptonic decays

★ In the SM, charged leptons have universal couplings to EW gauge bosons

 $g_e = g_\mu = g_\tau = g \implies$ Studied and tested for π , Kaons and B-mesons

$$\blacktriangleright \text{Kaon sector: } \mathbf{R}_{\mathbf{K}}^{\boldsymbol{\ell}} = \frac{\mathbf{\Gamma}(\mathbf{K} \to \boldsymbol{e}\,\bar{\boldsymbol{\nu}})}{\mathbf{\Gamma}(\mathbf{K} \to \boldsymbol{\mu}\,\bar{\boldsymbol{\nu}})} = \left(\frac{m_e}{m_\mu}\right)^2 \left(\frac{m_K^2 - m_e^2}{m_K^2 - m_\mu^2}\right)^2 \ (1 + \delta R_{\mathsf{QED}})$$

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$$

► Pion sector:
$$R_{e/\mu}^{\pi} = \frac{\Gamma(\pi \to e \bar{\nu} (\gamma))}{\Gamma(\pi \to \mu \bar{\nu} (\gamma))}$$

 $R_{SM}^{\pi} = (1.2352 \pm 0.0002) \times 10^{-4}$ (±0.16 pp mille)
 $R_{exp}^{\pi} = (1.2344 \pm 0.00030) \times 10^{-4}$ (±2.4 pp mille)

In the future, **PEN** and **PIENU** (final results): beyond $\mathcal{O}(0.02\%)$ precision!

Anomalous magnetic moments & more

 \Rightarrow Angular correlation of e^+e^- internal pair creation ${}^{8}Be^{*}(j^{\pi} = 1^{+}, T = 0) \rightarrow {}^{8}Be^{0}(j^{\pi} = 0^{+}, T = 0)$ (a) $5\sigma - 6\sigma$ \Rightarrow Similar deviations in ⁴*He* e^+e^- angular correlation ${}^{4}He(0^{-} \rightarrow 0^{+}, E = 21.01 \text{ MeV})$ @ 7.2σ \Rightarrow Production and decay of (hypothetical) light vector boson $m_X \sim 17 \text{ MeV}, \Gamma_X / \Gamma_\gamma \sim \mathcal{O}(10^{-5})$

Feng et al [2006.01151]

Minimal framework: $SU(3) \times SU(2) \times U(1) \times U(1)_{B-L} \sim Z'$ extra RH neutrinos, heavy vector-like leptons, scalar h_X m_{ν} from mixings with N_R and L^0 ; dynamical $m_M = v_X y_M$ New neutral currents (Z' and h_X)

Cancellation of NP contributions: saturate Δa_u and Δa_e^{Cs} Constrained parameter space! ⁸Be and $\Delta a_{\mu} \Rightarrow \Delta a_{e}$! (Far more challenging with $\Delta a_{\rho}^{\text{Rb}}$...) ~

Muon cLFV: EFT approach to New Physics

$$\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} + \frac{\mathscr{C}_5 \mathscr{O}^5}{\Lambda_{\mathsf{LNV}}} (m_{\nu}) + \frac{\mathscr{C}_6 \mathscr{O}^6}{\Lambda_{\mathsf{cLFV}}^2} (\mathscr{\ell}_{\alpha} \leftrightarrow \mathscr{\ell}_{\beta}) + \dots$$

 \Rightarrow cLFV data to constrain \mathscr{C}^6 (and infer sensitivity of a process to a given operator \mathscr{O}^6)

Comparative probing power (simplified overview): leptonic and (light) meson decays

A.M. Teixeira, LPC Clermont

Minimal extensions of the SM: anomalies & μ -physics Cnrs

Extensive studies of SM extensions capable of addressing "anomalous" behaviours (i.e. tensions with SM expectation): $(g - 2)_{\ell}$, and LFUV in B-meson decays Minimal, testable models (first step towards complete constructions)

 $\mathsf{cLFV} \leftrightsquigarrow \mathsf{LFUV}$

Minimal SM extension via single vector LQ (V_1^{μ}) explain both $R_{K^{(*)}}$ and $R_{D^{(*)}}$ at tree-level

$$\mathcal{L} \supset V_1^{\mu} \left(\bar{d}_L^i \gamma_{\mu} \boldsymbol{K_L^{ik}} \ell_L^k + \bar{u}_L^j V_{ji}^{\dagger} \gamma_{\mu} \boldsymbol{K_L^{ik}} U_{kj}^{\mathsf{P}} \nu_L^j \right)$$

 $\Rightarrow \text{Effective } V_1 q \,\ell \text{ couplings from mixings} \\ \text{of SM leptons with heavy vector-like lepton} \\ (SU(2)_L \text{ doublets to avoid } Z \rightarrow \ell \ell' \text{ decays}) \end{cases}$

Most constraining observables: $K_L \rightarrow e\mu$ and $\mu - e$ conversion in nuclei

⇒ viable regimes within sensitivity of Mu2e and COMET [Hati, Kriewald, Orloff, AMT, 1907.05511]

Low-scale models of m_{ν} generation: type I seesaw

Addition of **3 "heavy" Majorana RH neutrinos** to the SM: MeV $\leq m_{N_i} \leq 10^{\text{few}}$ TeV

Spectrum & mixings: $\boldsymbol{m}_{\boldsymbol{\nu}} \approx -v^2 Y_{\boldsymbol{\nu}}^T M_N^{-1} Y_{\boldsymbol{\nu}} \quad \boldsymbol{U}^T \mathcal{M}_{\boldsymbol{\nu}}^{6 \times 6} \boldsymbol{U} = \operatorname{diag}(m_i)$

$$\boldsymbol{U} = \begin{pmatrix} \boldsymbol{U}_{\boldsymbol{\nu}\boldsymbol{\nu}} & \boldsymbol{U}_{\boldsymbol{\nu}N} \\ \boldsymbol{U}_{N\boldsymbol{\nu}} & \boldsymbol{U}_{NN} \end{pmatrix} \quad \boldsymbol{U}_{\boldsymbol{\nu}\boldsymbol{\nu}} \approx (1-\varepsilon) \, \boldsymbol{U}_{\text{PMNS}}$$

Heavy states do not decouple \Rightarrow modified neutral and charged leptonic currents

Rich phenomenology at high intensities and at colliders

A.M. Teixeira, LPC Clermont

CNIS

Leptonic cLFV decays: the role of CPV phases

cLFV processes mediated by sterile states at loop-level Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathscr{U}_{5\times 5}$, CPV phases)

Sizeable contributions to extensive leptonic cLFV observables

Interference effects (CPV) between heavier states can be present!

⇒ Constructive & destructive interference effects in cLFV decays (leptonic and boson)

 \Rightarrow Impact to any interpretation of experimental data

Assume (for simplicity & illustrative purposes): $m_4 \approx m_5$ and $\sin \theta_{\alpha 4} \approx \sin \theta_{\alpha 5} \ll 1$ $|G_{\gamma}^{\mu e}|^2 \approx 4 \sin^2 \theta_{e4} \sin^2 \theta_{\mu 4} \cos^2 \left(\frac{\delta_{14} + \delta_{25} - \delta_{15} - \delta_{24}}{2}\right) G_{\gamma} \left(\frac{m_{N_i}^2}{m_W^2}\right)$

 \Rightarrow Radiative decays: rate depends only on Dirac phases; full cancellation for $\Sigma \delta = \pi$ (Other form factors - more involved expressions, depend also on Majorana phases $\varphi_{4,5}$)

Leptonic cLFV decays: the role of CPV phases

cLFV processes: $\mu - e$ flavour transitions & Dirac phases

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases) Simplified approach: $\sin \theta_{\alpha 4} = \sin \theta_{\alpha 5}$; $m_4 = m_5 = (1, 5, 10)$ TeV

Abada, Kriewald, AMT [2107.06313]

Leptonic cLFV decays: the role of CPV phases

cLFV processes: $\mu - e$ conversion and CPV Dirac / Majorana phases

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathscr{U}_{5\times 5}$, CPV phases) Simplified approach: $\sin \theta_{\alpha 4} = \sin \theta_{\alpha 5}$; $m_4 = m_5 = 1$ TeV

[Abada, Kriewald, AMT, 2107.06313]

CPV & cLFV: phenomenological impact

CP violating phases do matter in cLFV observables!

Consider "3+2" toy model (SM + 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

- Phenomenological analysis: experimental constraints on TeV-scale HNL extensions
 - lepton flavour universality,
 - lepton number violation,
 - electroweak precision,
 - cLFV!, ...

and further limits (e.g. η , perturbative unitarity, ...)

conducting a thorough survey of parameter space

 \rightarrow random scans of mixings and phases, grid based, ...

- \Rightarrow Impact for phenomenological studies (predictions) of cLFV observables
- \Rightarrow Impact for falsifiable scenarios
- \Rightarrow More words of warning for **interpreting future data**

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP phases (Dirac and/or Majorana) generically present in most models of ν masses... And impact naïve expectations...

CNTS IN2P3

cLFV signatures: ratios of observables to identify mediators & constrain their masses! But - CP violating phases do matter! And impact naive expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathscr{U}_{5\times 5}$, CPV phases) Impact of CPV phases regarding experimental prospects!

General overview of parameter space: all angles & CPV phases randomly (independently) varied Non-degenerate heavy states (mass around TeV scale)

cLFV signatures: ratios of observables to identify mediators & constrain their masses! But - CP violating phases do matter! And impact naïve expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

cLFV signatures: ratios of observables to identify mediators & constrain their masses! But - CP violating phases do matter! And impact naïve expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Future cLFV data: what if CPV & cLFV?

cLFV searches: future data can shed light on underlying NP model !

But - CP violating phases do matter! And impact naïve theoretical expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathscr{U}_{5\times 5}$, CPV phases) ▶ Impact of CPV phases regarding experimental prospects!

In general, numerous constraints on SM extensions via sterile fermions from (negative searches for) flavour violating transitions:

Future cLFV data: what if CPV & cLFV?

cLFV searches: future data can shed light on underlying NP model !

But - CP violating phases do matter! And impact naïve theoretical expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathscr{U}_{5\times 5}$, CPV phases) ▶ Impact of CPV phases regarding experimental prospects!

In general, numerous constraints on SM extensions via sterile fermions from (negative searches for) flavour violating transitions:

cLFV boson decays and heavy neutral leptons

cLFV processes: $H \rightarrow \ell_{\alpha}\ell_{\beta}, Z \rightarrow \ell_{\alpha}\ell_{\beta}$ and CPV Dirac / Majorana phases

Scalar and vector boson cLFV decays sensitive to additional heavy sterile states

See also extensive contributions by several groups: for instance

[9403398], ..., [1405.4300], [1412.6322], [1503.04159], [1607.05257], [1612.0929], [1703.00896], [1710.02510], [1807.01698], [1912.13327], [2005.11234], ... among many others!

[Abada, Kriewald, Pinsard, Rosauro, AMT, 2207.10109]

Full computation (no approximation) of cLFV widths; both unitary & Feynman gauges for complete models with HNL (type I seesaw, ISS, ...)

cLFV boson decays and heavy neutral leptons

CNTS IN2P3

cLFV processes: $H \to \ell_{\alpha} \ell_{\beta}$, $Z \to \ell_{\alpha} \ell_{\beta}$ and CPV Dirac / Majorana phases

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathscr{U}_{5\times 5}$, CPV phases) All angles & CPV phases randomly (independently) varied; non-degenerate heavy states (TeV)

 \Rightarrow Important contributions of sterile fermions to cLFV Higgs and Z decays! ($H \rightarrow \mu \tau$ most promising, but still beyond "observation", even FCC-ee...)

⇒ Clear effect of Majorana and Dirac phases on decay rates:

Constructive and destructive interferences

Milder loss of correlation with respect to CP conserving case than cLFV leptonic decays