Muon g-2 & EDM at Fermilab

Muon4Future Workshop Venezia, IT May 30, 2023

Sean Foster, Boston University

on behalf of the E989 Muon g-2 Collaboration

Muon magnetic moment & g-factor

Muon's have an intrinsic magnetic moment due to their spin

- "g-factor" quantifies the strength of the magnetic moment
- Measure & predict g to test Standard Model & search for new physics

2

Anomalous magnetic moment

▶ Measure & predict a_{μ} to test Standard Model & search for new physics

Muon electric dipole moment

- Electric dipole moment of the muon has not been observed
- ► Strongest limit set by BNL Muon g-2 experiment $< 1.8 \times 10^{-19} e$ cm (95% C.L.)
- ► EDM violates parity (P) & time-reversal (T)
 - ► Assuming CPT invariance, EDM violates CP
- Standard model value many orders of magnitude below limit
- Observation of a nonzero EDM = evidence of new physics

E989 Muon g-2 Experiment at Fermilab

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

Fermilab Run-1 g-2 result

- ► Fermilab result consistent with previous measurement at BNL
- Experimental average 4.2 σ tension with Standard Model; a hint of new physics?

BOST

INIVERSITY

Standard model prediction of a_{μ}

BOST

JNIVERSIT

Theory status

► We just heard an overview

Theory overview of muon g-2 and EDM

Palazzo Franchetti, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti

- Lots of effort to understand discrepancy in HVP contribution between R-Ratio and Lattice QCD approaches
 - See afternoon session today!

Hadronic Vacuum Polarization dispersive and data-driven methods	Gilberto Colangelo
Palazzo Franchetti, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti	14:30 - 15:00
Hadronic Vacuum Polarization on lattice	Zoltan Fodor
Palazzo Franchetti, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti	15:00 - 15:30
The MuonE experiment	Dinko Pocanic
Palazzo Franchetti, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti	15:30 - 16:00
R-ratio measurements	Riccardo Aliberti
Palazzo Franchetti, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti	16:00 - 16:30
Discussion	
Palazzo Franchetti, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti	16:30 - 17:00

Paride Paradisi

11:30 - 12:00

Muon g-2 at Fermilab: status

- Run-1: 6% of target statistics (460 ppb)
- Runs 2 & 3: x4 statistics compared to Run-1 Analysis nearly done
- Runs 4, 5, 6: reached statistics goal x21 BNL on Feb. 27, 2023!

Spin vector precess due to Larmor +Thomas precession

Momentum vectors rotates at cyclotron frequency

 $\overrightarrow{\omega}_{c} = -\frac{e\overrightarrow{B}}{\gamma m} \qquad \overrightarrow{\omega}_{s} = -g\frac{e\overrightarrow{B}}{2m} - (1-\gamma)\frac{e\overrightarrow{B}}{\gamma m}$ $\blacktriangleright Spin difference \text{ frequency is proportional to } a_{\mu}:$

$$\overrightarrow{\omega}_{a} = \overrightarrow{\omega}_{s} - \overrightarrow{\omega}_{c} = -a_{\mu}\frac{e}{m}$$
anomalous magnetic anomal

Place muon in a magnetic field and measure anomalous spin precession

Muon g-2 measurement technique

► In a magnetic field,

Momentum

Spin

Effect of an EDM & search strategy

- ► EDM *tilts* muon spin polarization plane
- ▶ Maximum tilt occurs at $\phi_a = \pm 90^\circ$

Search for EDM by looking for a nonzero average tilt

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

Muon EDM search at Fermilab: status

- ► Run-1 *tracker-based* analysis nearing completion
 - Directly measure average vertical decay angle
 - ► Limit will be comparable to BNL
 - ► Analysis is *statistics-limited* (~100M tracks)
- ▶ Run 2 & 3 analysis underway
 - ► 4x more data
 - Improved tracking efficiency (better than x4 scaling)
- ► After runs 4, 5, & 6: sensitive to $d_{\mu} \sim 1 \times 10^{-20} e \cdot cm$
- Also a calorimeter-based approach (not undertaken in Run-1 due to broken quadruple resistors)

Storage ring at Fermilab

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

Storage ring

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

BOSTON

UNIVERSITY

Polarized beam & storage ring magnet

Muon production

- Protons accelerated to 8 GeV
- Form 16 proton bunches,120 ns long
- ► 10^{12} protons per bunch
- Pion production via fixed target
- ▶ Pion decay produces polarized μ^+ (~95%)
- ► ~10,000 stored muons per bunch

Muon injection: inflector

Muon storage: kickers

Muon storage: kickers

Muon storage: electrostatic quadrupoles

Beam focusing

- ► Radial focusing: main 1.451 T magnetic field
- Vertical focusing: electrostatic quadrupoles

Beam focusing

- ► Radial focusing: main 1.451 T magnetic field
- Vertical foc Broken resistors in Run-1 fixed; no slow beam drift

Beam focusing

- ► Radial focusing: main 1.451 T magnetic field
- Vertical foc Broken resistors in Run-1 fixed; no slow beam drift

For Run-5, RF pulse applied to quadrupoles to dampen radial beam oscillation

Full spin dynamics with \overrightarrow{E} and \overrightarrow{B}

Full equation for ω_a with electric & magnetic fields

$$\vec{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - \frac{a_{\mu} \vec{\gamma}}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- ► First term: signal we are trying to measure!
- Second term: contributions from vertical motion: the pitch correction
- Third term: contribution due to electrostatic quadrupoles
 - ► Can be set to 0! $\gamma_0 = \sqrt{\frac{1}{a_\mu} + 1} = 29.3 \implies p_0 = 3.094 \text{ GeV/c}$
 - ► p_0 is called the "magic" momentum
 - ► For non-"magic" muons: electric field correction

Muon decay

$$\mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e$$

- Muon decay violates *parity:* correlates highest energy decay positron momentum direction and the muon spin direction
- ▶ In the lab frame: decay positron energy spectra modulated by ω_a

Trackers

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

Trackers measure beam distribution

Beam position vs. time determined with 2 straw tracking detectors

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

UNIVERSITY

Calorimeters

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

BOSTON

UNIVERSITY

Calorimeters measure decay positron energies

- ► 24 electromagnetic calorimeters, each a 6x9 grid of PbF₂ crystals
- Cherenkov light produced by positrons & collected by SiPMs
- Signal is digitized and fit with empirical template functions
- Laser calibration system for gain stability
- ▶ Positrons are placed in wiggle plot, from which ω_a is extracted

NMR probes

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

BOSTON

UNIVERSITY

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

NMR probes to measure magnetic field

- Magnetic field measured with pulsed proton nuclear magnetic resonance (NMR): 378 fixed probes & 17 on a trolley
- Extract *frequency* ω_p from oscillating proton spins
- Create field maps in position and time
- Calibrated to a standard to extract magnetic field

x [mm]

BOSTON UNIVERSITY 33

40

Muon g-2 measurement recipe

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

UNIVERSITY

Determining a_{μ}

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

Determining a_{μ}

- Measure muon anomalous precession frequency
- Measure proton Larmor precession & muon beam distribution
- ω_a corrections: electric field, pitch, lost muon, phase acceptance, differential decay
- ω_p corrections: transient fields from quadrupoles & kicker
- Unblinding factor & magnetic field calibration

Uncertainty table

Run-1 measurement was	Run-	1 table	-
statistics-limited	Quantity	Correction terms (ppb)	Uncertainty (ppb)
Run 2 & 3 also statistics-	ω_a^m (statistical) ω_a^m (systematic)		434 56
limited, numbers being	$C_e \\ C_p$	489 180	53 13
finalized now	C_{ml} C_{pa}	-11 -158	5 75
TDR statistics goal: 100 ppb	$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$ B_k	 -27	56 37
statistical & systematic	B_q $\mu'_p(34.7^\circ)/\mu_e$	-17 	92 10
Question: can we go	m_{μ}/m_e $g_e/2$		22 0
beyond TDR goal with this	Total systematic Total fundamental factors		157 25
technique?	Totals	544	462

$$\overrightarrow{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \overrightarrow{B} - a_{\mu} \frac{\gamma}{\gamma+1} (\overrightarrow{\beta} \cdot \overrightarrow{B}) \overrightarrow{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right] + \frac{\eta q}{2mc} \left[\overrightarrow{E} + c \overrightarrow{\beta} \times \overrightarrow{B} \right]$$

- An EDM introduces an extra term in spin precession
- Increases precession frequency (but too small to observe)
- Main signature: tilts polarization plane
- Measurement techniques:
 - Calorimeter-based method
 - Tracker-based method

Calorimeter-based approach

- Look for an asymmetry in the g-2 phase vs. vertical position
- Calorimeter segmentation allows vertical position resolution
- BNL result systematically limited; not performed in Fermilab Run-1

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

INIVERSIT

Tracker-based method

- Measure vertical decay angle directly & look for an oscillation
 - ▶ Oscillation is at the same g-2 frequency ω_a
 - ▶ Phase is $\pm 90^{\circ}$ out of phase with ω_a signal
- Extract g-2 phase from number oscillation & fit average vertical angle vs. time with sinusoid
- Can improve measurement by reducing vertical RMS of the beam

	Sensitivity
Run-1	2 10
Run 2&3	
Run 4/5/6	

Sean Foster | Muon g-2 and EDM at Fermilab | Muon4Future Workshop | May 30, 2023

Radial field

- A radial magnetic field also tilts the polarization plane & therefore mimics an EDM signal
- Measure radial field by applying a known radial field & scanning quadrupole voltage
- Measured to a precision of <1 ppm</p>

E989 outlook and future

- Reached TDR statistics goal February of this year (x21 BNL)
- ► Run 2/3 analysis nearing completion (x4 stats compared to Run-1)
- ► Run 4/5/6 analysis picking up speed
- EDM Run-1 analysis nearing completion (comparable to BNL sensitivity) & Run 2 & 3 analysis underway with improved tracking efficiency
- Can we push storage ring technique further?
- ► Future use of storage ring? Frozen spin EDM measurement?

E989 outlook and future

- ► Reached TDR statistics goal earlier this year (x21 BNL)
- ► Run 2/3 analysis nearing completion (x4 stats compared to Run-1)
- ► Run 4/5/6 analysis picking up speed
- EDM Run-1 analysis nearing completion (comparable & Run 2 & 3 analysis underway with improved tracking efficiency
- Can we push storage ring technique further?
- Future use of storage ring? Frozen spin EDM measurement?

Thanks for listening!

