Theory overview of muon g-2 and EDM

Paride Paradisi

University of Padova and INFN

Muon4Future workshop May 29th-31st 2023, Venice - IT

Plan of the talk

1 The high-intensity frontier

Experimental stutus/prospects

2 "Old muon g-2 puzzle" (pre BMW 2021)

Possible new physics interpretations

3 Leptonic g-2, EDMs & LFV interrelationship

Model independent considerations

(4) "New muon g-2 puzzle" (post BMW 2021)

Possible new physics interpretations

6 Conclusions and future prospects

Where to look for New Physics at low-energy?

Processes very suppressed or even forbidden in the SM

- ▶ LFV processes ($\mu \rightarrow e\gamma$, $\mu \rightarrow e$ in N, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow 3\mu$,...)
- CPV effects in the leptonic (e, µ) and neutron EDMs
- FCNC & CPV in B_{s,d} & D decay/mixing amplitudes

Processes predicted with high precision in the SM

- EWPO as $(g-2)_{\mu}$: $\Delta a_{\mu} = a_{\mu}^{exp} a_{\mu}^{SM} = (2.51 \pm 0.59) \times 10^{-9} (4.2\sigma \text{ discrepancy!})$
- ▶ LFUV in $M \to \ell \nu$ (with $M = \pi, K, B$), $B \to D^{(*)}\ell \nu, B \to K\ell\ell', \tau$ and Z decays

High-intensity frontier: A collective effort to determine the NP symmetries

Experimental status

Process	Present	Experiment	Future	Experiment
$\mu ightarrow oldsymbol{e} \gamma$	$4.2 imes 10^{-13}$	MEG	$pprox 6 imes 10^{-14}$	MEG II
$\mu ightarrow$ 3 $m{e}$	$1.0 imes 10^{-12}$	SINDRUM	$pprox$ 10 $^{-16}$	Mu3e
μ^- Au $ ightarrow$ e^- Au	$7.0 imes 10^{-13}$	SINDRUM II	?	
μ^- Ti $ ightarrow e^-$ Ti	$4.3 imes10^{-12}$	SINDRUM II	?	
$\mu^- \: AI o oldsymbol{e}^- \: AI$	—		$pprox 10^{-16}$	COMET, MU2e
$ au ightarrow oldsymbol{e} \gamma$	$3.3 imes10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au o \mu \gamma$	$4.4 imes10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au ightarrow 3 {m e}$	$2.7 imes10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II
$ au ightarrow {f 3} \mu$	$2.1 imes10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II
<i>d</i> _e (e cm)	$1.1 imes 10^{-29}$	ACME	\sim 3 $ imes$ 10 ⁻³¹	ACME III
$d_{\mu}({ m e~cm})$	$1.8 imes10^{-19}$	Muon (g-2)	$\sim 10^{-22}$	PSI

Table: Present and future experimental sensitivities for relevant low-energy observables.

- So far, only upper bounds. Still excellent prospects for exp. improvements.
- We can expect a NP signal in all above observables below the current bounds.

Experimental status of the muon g - 2

• April 7th 2021: Muon g – 2 experiment at FNAL confirms BNL!

$$\begin{split} a_{\mu}{}^{\text{EXP}} &= (116592089 \pm 63) \times 10^{-11} \begin{bmatrix} 0.54ppm \end{bmatrix} \text{ BNL E821} \\ a_{\mu}{}^{\text{EXP}} &= (116592040 \pm 54) \times 10^{-11} \begin{bmatrix} 0.46ppm \end{bmatrix} \text{ FNAL E989 Run 1} \\ a_{\mu}{}^{\text{EXP}} &= (116592061 \pm 41) \times 10^{-11} \begin{bmatrix} 0.35ppm \end{bmatrix} \text{ WA} \end{split}$$

- FNAL aims at 16 \times 10⁻¹¹. A new FNAL release expected by this summer! [see Foster's talk]
- Muon g 2 proposal at J-PARC: Phase-1 with similar BNL precision.

Paride Paradisi (University of Padova and INFN)

New Physics for the muon g - 2: at which scale?

• Δa_{μ} discrepancy at $\sim 4.2 \sigma$ level:

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 \mathbf{v}^2} \approx 2 \times 10^{-9}$

- ▶ NP is at the weak scale ($\Lambda \approx \nu$) and weakly coupled to SM particles.*
- $\blacktriangleright\,$ NP is very light (A \lesssim 1 GeV) and feebly coupled to SM particles.
- ▶ NP is very heavy ($\Lambda \gg \nu$) and strongly coupled to SM particles.

*Favoured by the *hierarchy problem* and by a WIMP DM candidate but disfavoured by the LEP and LHC bounds (supersymmetry being the most prominent example).

[For a through compilation of models, see Athron, Balazs, Jacob, Kotlarski, Stockinger, Stockinger-Kim, '21.]

$\Lambda \approx v$: SUSY and the muon (g - 2)

Figure: LHC Run 2 bounds on SUSY scenario for the muon g - 2 anomaly for tan $\beta = 40$. Orange (yellow) regions satisfy the muon g - 2 anomaly at the 1σ (2σ) level [Endo et al., '20].

Paride Paradisi (University of Padova and INFN)

$\Lambda \lesssim$ 1 GeV: Axion-like Particles and the muon (g-2)

Axion-like Particle effective Lagrangian

$$\mathcal{L} = e^2 C_{\gamma\gamma} rac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + rac{c_{\mu\mu}}{2} rac{\partial^{
u} a}{\Lambda} \bar{\mu} \gamma_{
u} \gamma_5 \mu$$

Figure: Contributions of a scalar 's' and a pseudoscalar 'a' ALP to the $(g-2)_{\ell}$.

[Marciano, Masiero, PP, Passera '16]

[Cornella, P.P., Sumensari '19]

Figure: Δa_{μ} regions favoured at 68% (red), 95% (orange) and 99% (yellow) CL. Gray regions are excluded by the BaBar search $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$ [Bauer, Neubert, Thamm, '17]

$$\Delta a_{\mu} = \frac{m_{\mu}^2}{\Lambda^2} \left[\frac{12\alpha^3}{\pi} C_{\gamma\gamma}^2 \ln^2 \frac{\Lambda^2}{m_{\mu}^2} - \frac{(c_{\mu\mu})^2}{16\pi^2} h_1 \left(\frac{m_a^2}{m_{\mu}^2}\right) - \frac{2\alpha}{\pi} c_{\mu\mu} C_{\gamma\gamma} \ln \frac{\Lambda^2}{m_{\mu}^2} \right]$$

$\Lambda \gg v$: the muon g-2 at a high-energy muon collider

SMEFT Lagrangian relevant for Δa_ℓ [Buttazzo and P.P., '20]

$$\mathcal{L} = \sum_{V=B,W} \frac{C_{eV}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) HV_{\mu\nu} + \sum_{q=c,t} \frac{C_T^{\ell q}}{\Lambda^2} (\bar{\ell}_L \sigma_{\mu\nu} e_R) (\overline{Q}_L \sigma^{\mu\nu} q_R) + h.c.$$

Figure: SMEFT Feynman diagrams for the *g*-2 (upper row) and scattering processes (lower row): $H = v + h/\sqrt{2}$

Figure: 95% C.L. reach on Δa_{μ} vs \sqrt{s} from various processes assuming $\mathcal{L} = (\sqrt{s}/10 \text{ TeV})^2 \times 10 \text{ ab}^{-1}$.

$$\Delta a_{\mu} \sim \frac{m_{\mu} v}{\Lambda^2} C_{eV,T} \quad \iff \quad \sigma_{\mu\mu\to f} \sim \frac{s}{\Lambda^4} |C_{eV,T}|^2 \quad (f = e\gamma, eZ, q\bar{q})$$

• At high energy $\sigma_{\mu\mu\to f}$ can compete with Δa_{μ} to test the very same NP!

Paride Paradisi (University of Padova and INFN)

• NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \boldsymbol{e} \frac{\boldsymbol{m}_{\ell}}{2} \left(\bar{\ell}_{\boldsymbol{R}} \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'} \boldsymbol{\ell}_{\boldsymbol{L}}' + \bar{\ell}_{\boldsymbol{L}}' \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'}^{\star} \boldsymbol{\ell}_{\boldsymbol{R}} \right) \boldsymbol{F}^{\mu\nu} \qquad \ell, \ell' = \boldsymbol{e}, \mu, \tau \,,$$

Branching ratios of $\ell
ightarrow \ell' \gamma$ [see Teixeira's and Renner's talks]

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right).$$

Δa_ℓ and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{e} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

▶ "Naive scaling": a broad class of NP theories contributes to Δa_{ℓ} and d_{ℓ} as

$$rac{\Delta a_\ell}{\Delta a_{\ell'}} = rac{m_\ell^2}{m_{\ell'}^2}, \qquad \qquad rac{d_\ell}{d_{\ell'}} = rac{m_\ell}{m_{\ell'}}$$

Model-independent predictions

•
$${
m BR}(\ell_i o \ell_j \gamma)$$
 vs. $(g-2)_\mu$

$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2 \\ \mathrm{BR}(\tau \to \mu\gamma) &\approx 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\mu\tau}}{10^{-2}}\right)^2 \end{aligned}$$

• EDMs vs.
$$(g-2)_{\mu}$$

$$\begin{array}{ll} d_e &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 10^{-29} \left(\frac{\phi_e^{\mathcal{P}V}}{10^{-5}}\right) \ e \ \mathrm{cm} \,, \\ \\ d_\mu &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 2\times 10^{-22} \ \phi_\mu^{\mathcal{CPV}} \ e \ \mathrm{cm} \,, \end{array}$$

• Main messages:

- $\Delta a_{\mu} pprox (3 \pm 1) imes 10^{-9}$ requires a nearly flavor and CP conserving NP
- **Large effects in the muon EDM** $d_{\mu} \sim 10^{-22} \ e \ {
 m cm}$ are still allowed!

[Giudice, P.P., & Passera, '12]

Paride Paradisi (University of Padova and INFN)

Experimental status of the muon EDM

[Crivellin, Hoferichter & Schmidt-Wellenburg, '18, see Schmidt-Wellenburg's talk]

$$d_\mu ~\simeq~ \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 2 imes 10^{-22} ~\phi_\mu^{
m CPV} ~e~{
m cm}\,,$$

[Giudice, PP & Passera, '12]

Longstanding muon g – 2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} pprox (a_{\mu}^{\text{SM}})_{weak} pprox rac{m_{\mu}^2}{16\pi^2 v^2} pprox 2 imes 10^{-9}$

Testing the muon g - 2 anomaly through the electron g - 2

$$\frac{\Delta a_e}{\Delta a_\mu} = \frac{m_e^2}{m_\mu^2} \qquad \Longleftrightarrow \qquad \Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) 0.7 \times 10^{-13}$$

- ► a_e has never played a role in testing NP effects. From $a_e^{\text{SM}}(\alpha) = a_e^{\text{EXP}}$, we extract α which was is the most precise value of α up to 2018!
- The situation has now changed thanks to th. and exp. progresses.
- α can be extracted from atomic physics and a_e used to perform NP tests!
- $\Delta a_e \lesssim 10^{-13}$ will bring a_e to play a pivotal role in probing new physics!

[Giudice, P.P, & Passera, '12]

• Status of △*a_e* as of 2012

$$\Delta a_{e} = a_{e}^{\text{EXP}} - a_{e}^{\text{SM}} = -9.2 (8.1) \times 10^{-13},$$

$$\delta a_{e} \times 10^{13}: \quad (0.6)_{\text{QED4}}, \quad (0.4)_{\text{QED5}}, \quad (0.2)_{\text{HAD}}, \quad (7.6)_{\delta\alpha}, \quad (2.8)_{\delta a_{e}^{\text{EXP}}}.$$

- > The errors from QED4 and QED5 will be reduced soon to 0.1×10^{-13} [Kinoshita]
- We expect a reduction of $\delta a_{\theta}^{\text{EXP}}$ to a part in 10⁻¹³ (or better). [Gabrielse]
- Work is also in progress for a significant reduction of $\delta \alpha$. [Nez]
- Status of Δa_e as of 2018: 2.4σ discrepancy [Parker et al., Science, '18]

$$\Delta a_{e} = a_{e}^{\text{EXP}} - a_{e}^{\text{SM}}(\alpha_{\text{Berkeley}}) = -8.8(3.6) \times 10^{-13}$$

$$\delta a_{e} \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (2.3)_{\delta\alpha}, \quad (2.8)_{\delta a_{e}^{\text{EXP}}},$$

Status of Δa_e as of 2020: 1.6σ discrepancy [Morel et al., Nature, '20]

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}}(\alpha_{\text{LKB2020}}) = 4.8 (3.0) \times 10^{-13}$$

$$\delta a_e \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (0.9)_{\delta\alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}$$

Status of Δa_e as of 2022: (2.8)_{δa^{EXP}} reduced to (1.3)_{δa^{EXP}} [Gabrielse et al., '22]

HLO contribution from lattice QCD

Great progress also in lattice QCD, where spacetime is modeled as a discrete grid of points. The BMW collaboration reached a 0.8% precision!

a_µ^{HLO} = 7075(23)_{stat}(50)_{syst} [55]_{tot} x 10⁻¹¹

2–2.50 tension with the "data-driven" evaluations.

Borsanyi et al (BMWc), Nature 2021

[see Colangelo's and Fodor's talks]

"new puzzle": if BMW is correct, the "old" g-2 discrepancy (4.2 σ) would be basically gone

be however, this brings in a new tension with e^+e^- data (2.2 σ)

Here, NP in $\sigma_{had}(e^+e^- \rightarrow hadrons)$ such that

[LDL, Masiero, Paradisi, Passera 2112.08312]

- $|. (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}} \approx (a_{\mu}^{\text{HVP}})_{\text{EXP}}$
- 2. the approximate agreement between BMW and EXP is not spoiled
- 3. w/o a direct contribution a_{μ}^{NP} (i.e. NP not in muons)

Muon g-2 $\rightleftharpoons \Delta \alpha$ connection

• Can Δa_{μ} be due to a missing contribution in σ_{had} ?

[Marciano, Passera, Sirlin 2008 & 2010; Keshavarzi, Marciano, Passera, Sirlin 2020. See also Crivellin, Hoferichter, Manzari, Montull 2020; Malaescu, Schott 2020; Colangelo, Hoferichter, Stoffer 2020]

 \succ a upward shift of $\sigma_{
m had}$ induces an increase of $\Delta lpha_{
m had}^{(5)}(M_Z)$

$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta \alpha_{\rm lep}(M_Z) - \Delta \alpha_{\rm had}^{(5)}(M_Z) - \Delta \alpha_{\rm top}(M_Z)}$$

• disfavoured by the EW fit (at about 2σ), if the shift happens at $\sqrt{s} \gtrsim 1 \text{ GeV}$

[Keshavarzi, Marciano, Passera, Sirlin 2020]

selects <code>light NP</code> inducing a sub-GeV modification of $\sigma_{
m had}$

Light New Physics in $\sigma_{ m had}$

• Light new physics inducing a sub-GeV modification of $\sigma_{\rm had}$ is the only possibility

2. NP coupled only to hadrons

FSR effects due to NP should be included into $\sigma_{had}(s)$, not easy to be accounted for... (depend on exp. cuts and mass of NP)

Paride Paradisi (University of Padova and INFN)

3. NP coupled both to hadrons and electrons

 \Rightarrow a positive sift on $(a_{\mu}^{
m HVP})_{e^+e^-}$ requires $\Delta\sigma_{
m had}^{
m NP} < 0$ (negative interference)

A new light Z' vector boson

• Requirements:

a light spin-1 mediator with vector couplings to first generation SM fermions

$$\mathcal{L}_{Z'} \supset (g_V^e \, \overline{e} \gamma^\mu e + g_V^q \, \overline{q} \gamma^\mu q) Z'_\mu \qquad q = u, d \qquad m_{Z'} \lesssim 1 \text{ GeV}$$

• It can be shown that (neglecting iso-spin breaking corrections due to NP)

$$\frac{\sigma_{\pi\pi}^{\rm \scriptscriptstyle SM+NP}}{\sigma_{\pi\pi}^{\rm \scriptscriptstyle SM}} = \left| 1 + \frac{g_V^e(g_V^u - g_V^d)}{e^2} \frac{s}{s - m_{Z'}^2 + i m_{Z'} \Gamma_{Z'}} \right|^2$$

A new light Z' vector boson

I. Semi-leptonic processes

 $e^+e^-
ightarrow q ar q$ has been measured with per-cent accuracy at LEP-II

$$\frac{\sigma_{qq}^{\text{SMANP}}}{\sigma_{qq}^{\text{SM}}} \approx 1 + 2 \frac{g_V^e g_q^Q}{e^2 Q_q} \qquad \longrightarrow \qquad |g_V^e g_V^q| \lesssim 4.6 \cdot 10^{-4} |Q_q| \qquad (\epsilon \lesssim 3.3 \cdot 10^{-3})$$

- 2. Leptonic processes
 - for $m_{Z'} \lesssim 0.3 \text{ GeV} (Z' \rightarrow e^+e^- \text{ is the main decay mode})$

 $e^+e^- \rightarrow \gamma Z'$ @ BaBar \longrightarrow $g_V^e \lesssim 2 \cdot 10^{-4}$

3. Iso-spin breaking observables

charged vs. neutral pion mass ^2 difference $\Delta m^2 = m_{\pi^+}^2 - m_{\pi^0}^2$

$$(\Delta m^2)_{Z'} \sim \frac{(g_V^u - g_V^d)^2}{(4\pi)^2} \Lambda_{\chi}^2 \qquad (\Lambda_{\chi} \approx 1 \text{ GeV})$$

 $|g_V^u - g_V^d| \lesssim 0.06$ [Rescaling lattice QCD calculation of Frezzotti et al 2112.01066]

A new light Z' vector boson

Independent exp. bounds prevent to solve the "new muon g-2 puzzle"!

MUonE: Muon-electron scattering @ CERN

- $\Delta \alpha_{had}(t)$ can be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.

Abbiendi, Carloni Calame, Marconi, Matteuzzi, Montagna, Nicrosini, MP, Piccinini, Tenchini, Trentadue, Venanzoni EPJC 2017 - arXiv:1609.08987

[Courtesy by M. Passera]

Letter of Intent submitted to CERN SPSC in 2019 [see Pocanik's talk]

MUonE: a new determination of $\Delta \alpha_{had}$

 The leading hadronic contribution a_μHLO computed via the timelike formula:

$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\text{had}}^0(s)$$
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \left(s/m_{\mu}^2\right)}$$

• Alternatively, simply exchanging the x and s integrations:

$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)]$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

Lautrup, Peterman, de Rafael, 1972

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region: a_{μ}^{HLO} can be extracted from scattering data!

• The extraction of $\Delta lpha_{
m had}$ is not contaminated by NP! [Masiero, PP, Passera, 2020]

Paride Paradisi (University of Padova and INFN)

Outlook

- The muon g 2 represents the most longstanding hint of New Physics now, thanks to the E989 experiment at FNAL, growing to 4.2σ .
- LQCD results by the BMWc weaken the muon g − 2 discrepancy to 1.6σ but they are in tension with the EW-fit and e⁺e⁻ → hadrons experimental data:
 - The MUonE experiment can provide an independent measure of $\Delta \alpha_{had}$ which is not contaminated by new physics effects.
- Both heavy New Physics ($\nu \lesssim \Lambda \lesssim 100 \text{ TeV}$) and ligh New Physics ($\Lambda \lesssim 1 \text{GeV}$) scenarios have the potential to account for the muon g-2 anomaly.
 - Different scenarios can be disentangled by dedicated searches at running or future experiments such as Belle II and a high-energy Muon Collider.
- If the muon g 2 anomaly will survive, we expect relevant enhancements in leptonic EDMs (especially in the muon EDM) and LFV physics.
- Testing New Physics effects in the electron g 2 at the 10^{-13} is not too far! This will bring a_e to play a pivotal role in probing New Physics in the leptonic sector.

Message: an exciting Physics program is in progress at the Intensity Frontier!

Paride Paradisi (University of Padova and INFN)