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Muon beamline at PSI

• For several precision experiments “quality” is important
• How can we cool a muon beam?

• What for?
e.g. Rare muon decay searches ( µ! → e!γ, µ!→ e!e"e! )

• High intensity cw positive muon beam (4.1 MeV) 
at the Paul Scherrer Institut (PSI)

p + p → π(… → µ(…
(beam) (target)

High “rate”,  poor “quality”

( 𝜏# = 2.2 μs )

proton 
beam
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muCool : “fast” phase space compression

phase space compression: 10#$
efficiency: 10%&

E ~ 4 MeV
cm-size
MeV-energy spread

E ~ eV 
sub mm-size 

𝜇(

𝜇(

D. Taqqu. Phys. Rev. Lett. 97.194801 (2006)

Δt < 10 µs

He gas target

Ø Efficiency of 10"$ - 10"%

Ø Phase space improved by > 10&
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muCool : “fast” phase space compression

phase space compression: 10#$
efficiency: 10%&

E ~ 4 MeV
cm-size
MeV-energy spread

E ~ eV 
sub mm-size 

𝜇(

𝜇(

D. Taqqu. Phys. Rev. Lett. 97.194801 (2006)

Δt < 10 µs

He gas target

keV energies 

Ø Muon g-2/EDM with storage ring

Ø Muonium spectroscopy,
muonium gravity experiments

Ø Material Science (μSR)

MeV energies 

Re-acceleration

Ø Efficiency of 10"$ - 10"%

Ø Phase space improved by > 10&
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muCool scheme
• Complex E-fields and B-field + density gradient compress the muon beam

1. Stop muon 
beam in He gas

2. Compress size

Transverse compression 𝝈𝒚
+

Longitudinal compression 𝝈𝒛

3. Extraction from 
He gas into vacuum

𝑬𝝁 ~ 4 MeV

𝑬𝝁 ~ 1 eV
𝝈𝒙, 𝝈𝒚 ~ 1 mm

𝝈𝒙, 𝝈𝒚 ~ 1 cm Cryogenics He gas target
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Muon drift in crossed E and B-fields

In gas: collisions     with gas atoms with frequency f"

Trajectories in # and $ fields + gas

high f"

low f"

tan( = f"
*

In vacuum

In gas: collisions     with gas atoms with frequency f"

Trajectories in # and $ fields + gas

high f"

low f"

tan( = f"
*

Collision with gas atoms 
at frequency f+

In gas
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muCool principle
Working principle – 1st stage

6 K: high f"

19 K: low f"

f" ∝ gas	density

Drift velocity

Transverse Compression

= 0

Simulated muon trajectories

Helium gas ~ 10 mbar

A. Antognini et al. Phys. Rev. Lett. 125.164802 (2020)

6.5 K 

22 K 

22 K 

6.5 K 

: muon mobility
: cyclotron frequency
: frequency of 
muon-He gas collisions
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muCool principle
Longitudinal Compression

Drift velocity

= 0

Simulated muon trajectories

Y. Bao et al. Phys. Rev. Lett. 112.224801 (2014)
Belosevic, I. et al. Eur. Phys. J. C 79:430 (2019)

𝐸! ≈ 0.4 kV/cm

: muon mobility
: cyclotron frequency
: frequency of 
muon-He gas collisions
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muCool principle

+ =

Transverse Compression Longitudinal Compression Mixed Compression

𝜇(
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Target realisation
• Lined Kapton-foil: Electric field for mixed compression

resistors
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Target realisation
• Lined Kapton-foil: Electric field for mixed compression

• Sapphire plates: Vertical density gradient

resistors

T = 22 K

T = 6.5 K
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Target realisation
• Lined Kapton-foil: Electric field for mixed compression

• Sapphire plates: Vertical density gradient

Electric potential simulation

resistors

T = 22 K

T = 6.5 K
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Experiment
Test of mixed compression (2019) 
• PSI πE1 beamline
• Momentum tuned ~15 MeV/c 

Cryostat

5T magnet
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Experiment

thermal shield

fibres

cold finger

collimator

target

He gas line

HV cable

aperture
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Test of mixed compression

• Large increase of counts: all muons reached target tip

Detection simulation

• t = 0 given by entrance counter

• “Indirectly” measure muon position 
by detecting decay positrons

Measured time spectra (2019 beamtime)

Scintillator detectors at target tip
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Test of mixed compression

• Large increase of counts: all muons reached target tip

Detection simulation

• t = 0 given by entrance counter

• “Indirectly” measure muon position 
by detecting decay positrons

observed
tension?

Scintillator detectors at target tip
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• Good agreement between simulations and measurements

Comparing measurements and simulation 2

- For “realistic” tuning of the target conditions

- For several detectors

- For several conditions (E, B, p)

G. Lospalluto

Tuning target parameters

Good agreement between 
simulations and measurements
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• Good agreement between simulations and measurements

Comparing measurements and simulation 2

- For “realistic” tuning of the target conditions

- For several detectors

- For several conditions (E, B, p)

Ø For “realistic” tuning of the target conditions

Ø For several detectors

Ø For several conditions (E, B, p)

B = 5 T
p = 8 mbar

B = 4 T
p = 8 mbar
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Next steps?

Open up muCool target
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Next steps?
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Next step: make an hole and extract muons

Figure 14: (Left) Rendering of the muCool target used to test mixed compression in 2017. Gluing of the
target foil is occurring at the endcaps (gray) while two structures of aluminum oxide (white) are used to
sustain the top sapphire plate given in green. (Right) Rendering of the muCool target developed in 2018.
A single frame (gray) is used to glue the target and to sustain the top sapphire.

Figure 15: Pictures of some gluing steps needed for the production of mixed compression targets.

5 Target development in 2018

In 2017 we observed that several discharges started from two support structures out of aluminum oxides
inside the target that serve to support the top sapphire (see Fig. 14 (Left)). The basic idea of this design
was to decouple the support of the sapphire from the foil gluing that is occurring at the endcaps.

In 2018 we developed a new target concept without these support elements. In this concept, both
the gluing of the folded foil forming the target, and the support of the top sapphire are achieved using a
single 3D printed piece as shown in Fig. 14 (Right). The top sapphire is held in place by small extensions
of the endcaps which produce minimal thermal contact between top and bottom sapphire (through the
endcaps). Because there is no glue between these small extensions and the foil right below the top
sapphire (and right above the bottom sapphire), the 3D printed plastic frame can thermally contract
independently of the thermal contraction of the sapphire plates. This feature qualifies this design for
operation at cryogenic temperatures. Several of such targets have been produced with positive outcomes
when tested at cold temperatures. However to date we have not yet performed breakdown voltage tests
with such targets.

For this new target concept we developed a new gluing process as summarized in Fig. 15. The tightness
of the target produced in this way have been tested various times at cold temperatures. The results have
been positive. Still we are in the process of optimizing this target design.

Another important feature of this design is that the bar at the target tip oriented in the z-direction
can be modified to implement the orifice and the He gas injection at the orifice (see later). A very crude
prototype target having an orifice and with gas injection at the orifice has been already manufactured.
However, the mechanical stability of such a target has not yet been tested at cryogenic temperatures.

11

𝜇!

Make a hole and extract muons
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Next steps?

He density map near the orifice

Muon extraction from gas target into vacuum 
via tiny orifice (eV energy muons)

1

1
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Figure 15: Pictures of some gluing steps needed for the production of mixed compression targets.

5 Target development in 2018

In 2017 we observed that several discharges started from two support structures out of aluminum oxides
inside the target that serve to support the top sapphire (see Fig. 14 (Left)). The basic idea of this design
was to decouple the support of the sapphire from the foil gluing that is occurring at the endcaps.

In 2018 we developed a new target concept without these support elements. In this concept, both
the gluing of the folded foil forming the target, and the support of the top sapphire are achieved using a
single 3D printed piece as shown in Fig. 14 (Right). The top sapphire is held in place by small extensions
of the endcaps which produce minimal thermal contact between top and bottom sapphire (through the
endcaps). Because there is no glue between these small extensions and the foil right below the top
sapphire (and right above the bottom sapphire), the 3D printed plastic frame can thermally contract
independently of the thermal contraction of the sapphire plates. This feature qualifies this design for
operation at cryogenic temperatures. Several of such targets have been produced with positive outcomes
when tested at cold temperatures. However to date we have not yet performed breakdown voltage tests
with such targets.

For this new target concept we developed a new gluing process as summarized in Fig. 15. The tightness
of the target produced in this way have been tested various times at cold temperatures. The results have
been positive. Still we are in the process of optimizing this target design.

Another important feature of this design is that the bar at the target tip oriented in the z-direction
can be modified to implement the orifice and the He gas injection at the orifice (see later). A very crude
prototype target having an orifice and with gas injection at the orifice has been already manufactured.
However, the mechanical stability of such a target has not yet been tested at cryogenic temperatures.
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Make a hole and extract muons

𝜇!
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Next steps?

He density map near the orifice
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was to decouple the support of the sapphire from the foil gluing that is occurring at the endcaps.
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Make a hole and extract muons

𝜇!

Muon extraction from gas target into vacuum 
via tiny orifice (eV energy muons)

1

Re-acceleration to 10 keV2
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Next steps?

He density map near the orifice

2
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inside the target that serve to support the top sapphire (see Fig. 14 (Left)). The basic idea of this design
was to decouple the support of the sapphire from the foil gluing that is occurring at the endcaps.

In 2018 we developed a new target concept without these support elements. In this concept, both
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of the endcaps which produce minimal thermal contact between top and bottom sapphire (through the
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with such targets.

For this new target concept we developed a new gluing process as summarized in Fig. 15. The tightness
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Make a hole and extract muons

𝜇!

Muon extraction from gas target into vacuum 
via tiny orifice (eV energy muons)

1

Re-acceleration to 10 keV

Extraction from 5T solenoid

2

3
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Next steps?
Muon extraction from gas target into vacuum 
via tiny orifice (eV energy muons)

He density map near the orifice

1

1

2

3
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5 Target development in 2018

In 2017 we observed that several discharges started from two support structures out of aluminum oxides
inside the target that serve to support the top sapphire (see Fig. 14 (Left)). The basic idea of this design
was to decouple the support of the sapphire from the foil gluing that is occurring at the endcaps.

In 2018 we developed a new target concept without these support elements. In this concept, both
the gluing of the folded foil forming the target, and the support of the top sapphire are achieved using a
single 3D printed piece as shown in Fig. 14 (Right). The top sapphire is held in place by small extensions
of the endcaps which produce minimal thermal contact between top and bottom sapphire (through the
endcaps). Because there is no glue between these small extensions and the foil right below the top
sapphire (and right above the bottom sapphire), the 3D printed plastic frame can thermally contract
independently of the thermal contraction of the sapphire plates. This feature qualifies this design for
operation at cryogenic temperatures. Several of such targets have been produced with positive outcomes
when tested at cold temperatures. However to date we have not yet performed breakdown voltage tests
with such targets.

For this new target concept we developed a new gluing process as summarized in Fig. 15. The tightness
of the target produced in this way have been tested various times at cold temperatures. The results have
been positive. Still we are in the process of optimizing this target design.

Another important feature of this design is that the bar at the target tip oriented in the z-direction
can be modified to implement the orifice and the He gas injection at the orifice (see later). A very crude
prototype target having an orifice and with gas injection at the orifice has been already manufactured.
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Make a hole and extract muons

𝜇!

Re-acceleration to 10 keV

Extraction from 5T solenoid

2

3
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Muon extraction from gas target into vacuum

He gas injected from 
• the back-wall of the target
• the side: ⊥ to 𝑣⃗& of muons

target frame

orifice

(1x1.3 mm2)

He

He
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Muon extraction from gas target into vacuum

He gas injected from 
• the back-wall of the target
• the side: ⊥ to 𝑣⃗& of muons

target frame

orifice

(1x1.3 mm2)

He

He

Zoom in
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Electric field design

orifice

target frame

detection plane

He
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orifice

target frame

detection plane

He

𝜖 ~ 90 % 
(without muon decay)

Δ𝐸 ~ eV
Beam size at detection plane

Electric field design and Geant4 simulations
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Target production

Electrode lines on Kapton foil Target frame
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Target production

Electrode lines on Kapton foil Target frame
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Next steps?
Muon extraction from gas target into vacuum

Re-acceleration to 10 keV

Extraction from 5T solenoid

He density map near the orifice

1

2

3

1

2

3

At B = 0.1 T

Pre
limi

nary

Δ𝐸 ≈ 50 eV(without 
muon decay)
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Efficiency estimates

𝜎'𝜎'( ≈ 𝜎)𝜎)( ≈ 2000 mm ⋅ mrad

𝐸 = 3.6 MeV
Δ𝐸 = 0.34 MeV (1 𝜎)

IN

OUT

𝜎'𝜎'( ≈ 1.3 mm ⋅ mrad
𝜎)𝜎)( ≈ 11.3 mm ⋅ mrad

𝐸 = 10 keV
Δ𝐸 ≤ 100 eV (1 𝜎)

HIMB rate 10,- 𝜇!/s

Efficiency ≥ 𝟑 ⋅ 𝟏𝟎"𝟓 Pre
limi

nary
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Summary
• muCool proposes a “fast” phase space compression scheme for μ+ beam for future low energy experiments

• Mixed compression stage successfully tested! 

• Performed simulations of muon extraction into vacuum and re-acceleration: target development ongoing

• This is achieved with complex E-fields and B-field in combination with a He gas density gradient
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Summary

Thank you!

• muCool proposes a “fast” phase space compression scheme for μ+ beam for future low energy experiments

• Mixed compression stage successfully tested! 

• This is achieved with complex E-fields and B-field in combination with a He gas density gradient

• Performed simulations of muon extraction into vacuum and re-acceleration: target development ongoing
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EXTRA SLIDES
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Muon production
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Muon-helium collisions

Ø consequences of the collisions: 
energy loss, direction change

Ø collision type depends on muon energy
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He gas injection schemes

different partitioning between 
back- and side-injections

(𝑇"# = 300 K)
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Muon extraction from gas target into vacuum

target frame

orifice

(1x1.3 mm2)

He

He gas density simulations with 
65% back-injection and 35% side-injection

He
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Extraction: xy plane

Position the parallel strips at x point 
where density drops sufficiently, i.e. 
drift angle in  𝐸 × 𝐵 tends to 0  
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Extraction: zy plane

Position the parallel strips at x point 
where density drops sufficiently, i.e. 
drift angle in  𝐸 × 𝐵 tends to 0  
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Electric field design and Geant4 simulations

orifice

target frame

𝜖 ~ 90 % 
(without muon decay)

Beam size at detection plane
Δ𝐸 ~ eV

detection plane

He

Heorifice inlet
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Preliminary conclusions
Baseline 
Efficiency

Possible 
Improvements

Description

5.5 ⋅ 1001 Coupling to 5T solenoid

4.6 ⋅ 1001 ×2 Into target entrance

6 ⋅ 1002 ×1.6 Stopping in He gas

8 ⋅ 1003 ×1.5 Compression towards orifice ( 5 𝜇𝑠 )

9 ⋅ 1001 Extraction from orifice

5 ⋅ 1001 Drift to re-acceleration region ( 0.5 𝜇𝑠 )

8 ⋅ 1001 Re-acceleration up to iron grid 

7 ⋅ 1001 Transmission to B-field free region

𝟑 ⋅ 𝟏𝟎0𝟓 ×4.8 Total baseline compression efficiency 
(and possible improvement)
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Extraction from B-field
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Protons  and muons  at PSI

Muon beam
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Sensitivity to misalignment of incoming beam
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Scintillators position and data
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