

Muon cooling at PSI

Giuseppe Lospalluto (ETH Zürich)

On the behalf of the muCool collaboration

Muon4Future, Venice 29 May 2023

Muon beamline at PSI

 High intensity cw positive muon beam (4.1 MeV) at the Paul Scherrer Institut (PSI)

$$p + p \rightarrow \pi^+ \dots \rightarrow \mu^+ \dots$$

(beam) (target)

What for?
e.g. Rare muon decay searches (μ⁺ → e⁺γ, μ⁺ → e⁺e⁻e⁺)

High "rate", poor "quality"

- For several precision experiments "quality" is important
- How can we cool a muon beam? ($\tau_{\mu} = 2.2 \ \mu s$)

muCool: "fast" phase space compression

- \blacktriangleright Efficiency of $10^{-4} 10^{-5}$
- > Phase space improved by $> 10^8$

muCool: "fast" phase space compression

Muon g-2/EDM with storage ring

D. Taqqu. Phys. Rev. Lett. 97.194801 (2006)

muCool scheme

• Complex E-fields and B-field + density gradient compress the muon beam

Muon drift in crossed E and B-fields

muCool principle

A. Antognini et al. Phys. Rev. Lett. 125.164802 (2020)

muCool principle

Simulated muon trajectories

Longitudinal Compression

Y. Bao et al. *Phys. Rev. Lett.* 112.224801 (2014)

G. Lospalluto

muCool principle

• Lined Kapton-foil: Electric field for mixed compression

• Lined Kapton-foil: Electric field for mixed compression

• Lined Kapton-foil: Electric field for mixed compression

GND

HV

lateral

top

bottom

GND

Experiment

Test of mixed compression (2019)

- PSI πE1 beamline
- Momentum tuned ~15 MeV/c

Experiment

Test of mixed compression

- *"Indirectly"* measure muon position by detecting decay positrons
- t = 0 given by entrance counter
- Large increase of counts: all muons reached target tip

Measured time spectra (2019 beamtime)

Test of mixed compression

- *"Indirectly*" measure muon position by detecting decay positrons
- t = 0 given by entrance counter
- Large increase of counts: all muons reached target tip

Tuning target parameters

Open up muCool target

Next step: make an hole and extract muons

The make a hole and extract muons 2022

Х

Next step: make an hole and extract muons

Х

Make a hole and extract muons 2022

- ① Muon extraction from gas target into vacuum via tiny orifice (eV energy muons)
- ② Re-acceleration to 10 keV

Next step: make an hole and extract muons

Х

Make a hole and extract muons.2022

- ① Muon extraction from gas target into vacuum via tiny orifice (eV energy muons)
- ② Re-acceleration to 10 keV

③ Extraction from 5T solenoid Next step: make an hole and extract muons

Make a hole and extract muons 2022

Х

- ① Muon extraction from gas target into vacuum via tiny orifice (eV energy muons)
- ② Re-acceleration to 10 keV

③ Extraction from 5T solenoid Next step: make an hole and extract muons

G. Lospalluto

Х

26

Muon extraction from gas target into vacuum

He gas injected from

- the back-wall of the target
- the side: \perp to \vec{v}_D of muons

Muon extraction from gas target into vacuum

He gas injected from

- the back-wall of the target
- the side: \perp to \vec{v}_D of muons

Electric field design

Electric field design and Geant4 simulations

Target production

Electrode lines on Kapton foil

N N N N N 9 9 9 D -20 0 E 100 0 20 6 P -80 -60 -40 -20

Target frame

Target production

Electrode lines on Kapton foil

Target frame

G. Lospalluto

M. Sakurai. PhD thesis (ETH Zurich) (2023)

Efficiency estimates

Summary

- muCool proposes a "fast" phase space compression scheme for μ+ beam for future low energy experiments
- This is achieved with complex E-fields and B-field in combination with a He gas density gradient
- Mixed compression stage successfully tested!
- Performed simulations of muon extraction into vacuum and re-acceleration: target development ongoing

Summary

- muCool proposes a "fast" phase space compression scheme for µ+ beam for future low energy experiments
- This is achieved with complex E-fields and B-field in combination with a He gas density gradient
- Mixed compression stage successfully tested!
- Performed simulations of muon extraction into vacuum and re-acceleration: target development ongoing

EXTRA SLIDES

Muon production

Muon-helium collisions

- collision type depends on muon energy
- consequences of the collisions: energy loss, direction change

He gas injection schemes

Muon extraction from gas target into vacuum

He gas density simulations with 65% back-injection and 35% side-injection

Extraction: xy plane

Position the parallel strips at x point where density drops sufficiently, i.e. drift angle in $\vec{E} \times \vec{B}$ tends to 0

0.4

0.2

6

x [mm]

-2

0

2

4

Extraction: zy plane

Position the parallel strips at x point where density drops sufficiently, i.e. drift angle in $\vec{E} \times \vec{B}$ tends to 0

Electric field design and Geant4 simulations

Preliminary conclusions

Baseline Efficiency	Possible Improvements	Description
$5.5 \cdot 10^{-1}$		Coupling to 5T solenoid
$4.6 \cdot 10^{-1}$	×2	Into target entrance
$6 \cdot 10^{-3}$	×1.6	Stopping in He gas
$8 \cdot 10^{-2}$	×1.5	Compression towards orifice (5 μs)
$9 \cdot 10^{-1}$		Extraction from orifice
$5 \cdot 10^{-1}$		Drift to re-acceleration region ($0.5 \ \mu s$)
$8 \cdot 10^{-1}$		Re-acceleration up to iron grid
$7 \cdot 10^{-1}$		Transmission to B-field free region
$3 \cdot 10^{-5}$	×4.8	Total baseline compression efficiency (and possible improvement)

HIMB rate: $10^{10} \mu/s$

M. Sakurai. PhD thesis (ETH Zurich) (2023)

- Efficient Mu production: Mu-spectroscopy and Mugravity
 - **Mathebasic Re-accelerate to higher energies:** e.g. 60 MeV for storage-ring-like experiments as μ EDM or g-2

Material science: distribute the muCool beam to

several μ SR setups at 40 kHz each

Extraction from B-field

Charge particles follow magnetic field lines

$$r_i \sim r_0 \sqrt{\frac{B_0}{B_i}}$$
$$\Delta E_{\perp i} \sim \Delta E_{\perp 0} \frac{B_i}{B_0}$$

The magnetic field can be terminated so that the beam transits from a region to another region with different field strengths. But in this process the charge particle receive an additional traverse momentum

,

$$\begin{split} \Delta p_{\perp} &= e \int_{0}^{t} v_{z} B_{\perp} dt \sim \frac{e w B_{i}}{2} \\ \Delta E_{\perp} &= \frac{e^{2}}{8m} w^{2} B_{i}^{2} \quad , \end{split}$$

Gerola et al., Rev. Sci. Instrum. 66 (7) 1995

Protons and muons at PSI

Muon beam

- Trade-off between "rate" and "quality"
- e.g. πE5 beamline at PSI

100 MHz at 28 MeV/c

 $\sigma_x \sim 1 \text{ cm}$

σ_E ~ 0.5 MeV

Sensitivity to misalignment of incoming beam

- · Misalignment between target axis and magnetic field
 - Maximum possible angle: $\theta_{MAX} \sim 4.5^{\circ}$

Scintillators position and data

