

<u>lon activ</u> M.C. at

Takayuki YAMAZAKI

Muon4Futue, Venezia 29 May 2023

Contents

- J-PARC muon facility
- New beamlines for fundamental physics
 - S2 area: Muonium 1S-2S (precise measurement of m_{μ})
 - H line: Muonium HFS (MuSEUM), μ -N \rightarrow e-N (DeeMe)
- Future extension of H-line
 - Low emittance muon beam for muon g-2/EDM and transmission muon microscope
- Future program: 2nd target station

J-PARC muon facility

J-PARC

J-PARC (Japan Proton Accelerator Research Complex)

MLF

MLF (Material and Life science Facility)

- Beam power 1 MW (~840 kW stable operation at present)
- Repetition rate 25 Hz, double bunches
- Tandem target: 5% for μ, 95% for n

J-PARC muon facility

• MUSE (MUon Science Establishment) in MLF

Beamlines for material science

New beamlines for fundamental physics

H line and S2 area

As of 25 May 2023

Future extension to accelerate up to 212 MeV For muon g-2/EDM and transmission muon microscope

S2 area and Mu 1S-2S

- 2nd branch of S line for Mu 1S-2S spectroscopy
 - ✓ Surface muon beamline: $2 \times 10^6 \mu^+/s$
 - ✓ In operation since FY2021

$$\Delta v_{1S2S} \simeq \frac{3\alpha^2}{8h} m_e c^2 \left(1 + \frac{m_e}{m_\mu}\right)^{-1}$$

Goal: 10 kHz precision $\Delta m_{\mu} = 1 \text{ ppb}$

Leptons Laser ionization Mu Energy Level 355 nm $2^2 S_{1/2}$ Laser Spectroscopy 244 nm Δv_{1S2S} 122 nm m_{μ} mass uncertainty 120 ppb (exp) **CODATA 2014** 22 ppb (theo+exp) 244 nm **Microwave** $1^2 S_{1/2}$ Δv_{1S-HFS}

Muonium (Mu)

S2 area and Mu 1S-2S

mass

H line

- H line is a high intensity muon beamline which can deliver both of surface μ^+ and cloud μ^+/μ^- .
- Beamline optics
 - HS1 : large acceptance capture solenoid

- HS2,3 : Two superconducting solenoid with opposite polarities
- HSEP : Wien filter to reduce e⁺/e⁻ background
 → will be installed during the next summer shutdown
- Surface muons of $10^8\,\mu^+/s$ @1 MW
- First beam to H1 area on 15 Jan. 2022!

H-line construction history

JFY2012 Frontend devices

JFY2016 Radiation shield

JFY2017~2019: Electric sub-station

* For the NC capture solenoid

JFY2020 Install magnets

JFY2021 Cabling, plumbing

H-line commissioning

Momentum of surface muons estimated from μ^+ range in Al target

Mu HFS @H1 area

Muonium (Mu)

→ lwai-san's talk

- Precise measurement of the hyperfine structure of muonium
- MuSEUM: Muonium Spectroscopy Experiment Using Microwave

Previous experiment: 4 463.302 765 (53) MHz (LAMPF1999)

Precision of 8 Hz will be reached by a high field measurement at the H-line.

This experiment is going to conducted after the Wien filter is installed.

μ⁻N→e⁻N @H1 area

- Search for μ -e conversion (sensitivity ~10⁻¹⁴)
 - DeeMe: **D**irect **e**lectron **e**mission from **M**uon **e**lectron conversions
 - Detectors are installed in H1 area and pilot RUN is underway.

Future extension of H line

Extension of H line

At the 2nd branch of H line, ultra-slow muons will be re-accelerated up to 212 MeV to obtain a low-emittance (1 π mm*mrad) muon beam.

Muon g-2/EDM experiment

 The low-emittance muon beam enables us not to use a strong focusing E-field.
 Complementary method to check the

Transmission muon microscope (TµM)

▷ Observe bulk samples utilizing the strong penetrative power of re-accelerated muons

Extension of H line

At the 2nd branch of H line, ultra-slow muons will be re-accelerated up to 212 MeV to obtain a low-emittance (1 π mm*mrad) muon beam.

Muon g-2/EDM experiment

 The low-emittance muon beam enables us not to use a strong focusing E-field.
 Complementary method to check the

Transmission muon microscope (TµM)

▷ Observe bulk samples utilizing the strong penetrative power of re-accelerated muons

H-line experimental bldg.

Low emittance muon beam

Transmission Muon Microscope

= Accelerated Muon : Strong Penetration + Ultraslow Muon : High Luminance / Resolution

Observe bulk samples utilizing the penetrative power of re-accelerated muons

- Any methods for TEMs are applicable
- Functional imaging of living/cryo-tissues
- It can see EM fields in packaged IC/LSI, Li ion battery, solar cell, piezo, etc.

Construction of H2 area

Shield and safety IL were built in Mar. 2023, but focusing magnets are not installed yet and will be installed in FY2024.

Construction of H2 area

Construction of H2 area

RFQ acceleration test was performed at D line and is underway at S2 area.

I. N. 18 M.

Preparatory works for new bldg.

Geotechnical investigation

Research of buried cultural properties

No buried cultural properties were found.

Survey of the construction site

Relocation of buried cables

Detailed design is going to be finalized in FY2023 to begin construction next year.

Future program: 2nd target station

J-PARC MLF 2nd target station

Conceptual Design report v1.2

Conceptual design

Simultaneous extraction of μ^+/μ^-

Design of the frontend magnet

REBCO tape

Buttom view

CERNOX-CU

Studying with Prof. Ogitsu (KEK cryo center) and COMET group, use of a SC coil at the capture solenoid (MS01) was confirmed to be possible.

Irradiation test has been performed to the candidates of SC material (HTS). T. Ogitsu *et al.*, Instruments 4 (2020) 30, DOI: 10.3390/instruments4040030

Summary

- New beamlines for fundamental physics joined the J-PARC muon facility recently.
 - H-line is a high intense muon beamline (surface $\mu^+ \sim 10^8$ /s)
 - H1 and S2 areas in operation
- Extension of H line to produce low emittance beam is ongoing.
 - FY2024: Ultra-slow muon production at H2 area
 - Construction of the new building for muon g-2/EDM and T μ M could start next year (depends on budget situlation)
- Conceptual design of the 2nd target station of the MLF is in progress.

Backup slides

New target

- Target and capture solenoid are the most important to get intense muon beam.
 - Near future: replace current target to enhance surface muons $>2x \rightarrow$ MuSEUM, DeeMe, 1S-2S, g-2/EDM
 - Future (10-20 years): target development for TS2

Rotating target 1/2

- 1MW proton beam causes 1dpa/year.
- Radioactivation of muon target = 5Sv/h, so replacement of muon target needs a lot of time and money.

Rotating target 2/2

- Rotating target
 - Like a muon target @PSI
 - Disperse heat and radiation damage
 - Prolong target's lifetime
 - \checkmark Lifetime of graphite = 30 years
 - ✓ Target lifetime is determined by the lifetime of the bearing (~10 years)
 - Graphite (IG-430U)
 - Thickness = 20mm
 - Rotating speed = 15rpm

Shape of new target

Current rotating target

New idea

Ζ

X

У

Z <

Rotation speed 15 rpm ~ 222 mm/s To disperse heat & rad. damage

Q. How can we disperse damage?

π+静止位置

Width dependence

- Model: QGSP_INCLXX
- Intensity of decay muons (= pions) is also important for our facility
- Without offset, thickness of 10.5 mm seems best. Surface muons = 1.7x

Offset dependence

